Free Access
Issue
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
Page(s) 707 - 722
DOI https://doi.org/10.1051/m2an:2000163
Published online 15 April 2002
  1. S. Andrieux, A. Ben Abda et M. Jaoua, Identifiabilité de frontiètres inaccessibles par une mesure unique de surface. Annales Maghrébines de l'Ingénieur, 7 (1993) 5-24. [Google Scholar]
  2. A. Ben Abda, S. Chaabane, F. El Dabaghi et M. Jaoua, On a non linear geometrical inverse problem of Signorini type: identifiability and stability. Math. Meth. in the Appl. Sci. 21 (1998) 1379-1398. [CrossRef] [Google Scholar]
  3. F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. Sinum (à paraître). [Google Scholar]
  4. F. Brezzi, W.W. Hager et P.A. Raviart Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431-443. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Chaabane et M. Jaoua, Identification of Robin coefficients by the means of boundary measurements. Inverse Problems 15 (1999) 1425-1438. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Hettlich et W. Rundell Iterative methods for the reconstraction of an inverse potential problem. Inverse Problems 12 (1996) 251-266. [Google Scholar]
  7. K. Khodja et M. Moussaoui, Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Diff. Eq. 17 (1992) 805-826. [Google Scholar]
  8. R.V. Kohn et A. McKenney Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems 6 (1990) 389-414. [Google Scholar]
  9. R.V. Kohn et M. Vogelius, Determinig conductivity by boundary measurements; interior results. Comm. Pure Appl. Math. 38 (1985) 644-667. [Google Scholar]
  10. R.V. Kohn et M. Vogelius, Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40 (1987) 745-777. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Kunisch et X. Pan, Estimation of interfaces from boundary measurements. SIAM J. Cont. Opt. 32 (1994) 867-894. [Google Scholar]
  12. J.L.M. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  13. J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, tome 1. Dunod, Paris (1968). [Google Scholar]
  14. J.R. Roche et J. Sokolowski, Numerical methods for shape identification problems. Control and Cybernetics 25 (1996) 867-894. [MathSciNet] [Google Scholar]
  15. J. Simon, Differentiation with respect to the domaine in boundary value problems. Num. Func. Anal. Opt. 2 (1980) 649-687. [Google Scholar]
  16. J. Sokolowski et J.P. Zolesio, Introduction to shape optimization; shape sensitivity analysis. Springer Verlag (1992). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you