Issue |
ESAIM: M2AN
Volume 35, Number 2, March/April 2001
|
|
---|---|---|
Page(s) | 295 - 312 | |
DOI | https://doi.org/10.1051/m2an:2001116 | |
Published online | 15 April 2002 |
Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations
Laboratoire de Mathématiques Appliquées, CNRS UMR 6620, Université Blaise Pascal (Clermont-Ferrand 2), 63177 Aubière Cedex, France, and, The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin NT, Hong Kong.
Received:
9
May
2000
Revised:
6
December
2000
We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate to the quasi-neutral limit in L2.
Résumé
On étudie les couches limites et les limites de quasi-neutralité aux systèmes de dérivée-diffusion. On montre d'abord que cette limite est unique et déterminée par un système découplé avec données initiales et aux limites. On établit ensuite les équations des couches limites et montre l'existence et l'unicité de solutions avec l'atténuation exponentielle. Ceci implique un résultat de convergence globale (par rapport au domaine) de la suite de solutions et un taux de convergence optimale dans la limite de quasi-neutralité dans L2.
Mathematics Subject Classification: 35B25 / 35B40 / 35K57
Key words: Asymptotic analysis / boundary layers / optimal convergence rate / drift-diffusion equations.
© EDP Sciences, SMAI, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.