Free Access
Issue
ESAIM: M2AN
Volume 35, Number 2, March/April 2001
Page(s) 295 - 312
DOI https://doi.org/10.1051/m2an:2001116
Published online 15 April 2002
  1. J.P. Aubin, Un théorème de compacité. C. R. Acad. Sci. Paris 256 (1963) 5042-5044. [MathSciNet] [Google Scholar]
  2. Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737-754. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Brézis, F. Golse, R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas. C. R. Acad. Sci. Paris 321 (1995) 953-959. [Google Scholar]
  4. S. Cordier, P. Degond, P. Markowich, C. Schmeiser, Traveling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit. Asymptot. Anal. 11 (1995) 209-224. [Google Scholar]
  5. S. Cordier, E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm. Partial Differential Equations 25 (2000) 1099-1113. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.C. Fife, Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal. 52 (1973) 205-232. [MathSciNet] [Google Scholar]
  7. H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121-133. [CrossRef] [MathSciNet] [Google Scholar]
  8. I. Gasser, The initial time layer problem and the quasi-neutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl. (to appear). [Google Scholar]
  9. I. Gasser, D. Levermore, P. Markowich, C. Schmeiser, The initial time layer problem and the quasi-neutral limit in the drift-diffusion model (submitted). [Google Scholar]
  10. A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85-110. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007-1033. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 83-118. [Google Scholar]
  13. A. Jüngel, Y.J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385-396. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. (to appear). [Google Scholar]
  15. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villard, Paris (1969). [Google Scholar]
  16. P.A. Markowich, A singular perturbation analysis of the fundamental semiconductor device equations. SIAM J. Appl. Math. 44 (1984) 896-928. [CrossRef] [MathSciNet] [Google Scholar]
  17. P.A. Markowich, C. Ringhofer, C. Schmeiser, An asymptotic analysis of one-dimensional models for semiconductor devices. IMA J. Appl. Math. 37 (1986) 1-24. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y.J. Peng, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system. Nonlinear Anal. TMA 42 (2000) 1033-1054. [Google Scholar]
  19. P. Raviart, On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion, Lect. Notes of the Summer school in Ile d'Oléron, France (1997) 452-539. [Google Scholar]
  20. L. Tartar, Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symp. Vol. 4 and Res. Notes Math. 3 (1979) 136-212. [Google Scholar]
  21. A. Visintin, Strong convergence results related to strict convexity. Comm. Partial Differential Equations 9 (1984) 439-466. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you