Free Access
Volume 35, Number 2, March/April 2001
Page(s) 295 - 312
Published online 15 April 2002
  1. J.P. Aubin, Un théorème de compacité. C. R. Acad. Sci. Paris 256 (1963) 5042-5044. [MathSciNet]
  2. Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737-754. [CrossRef] [MathSciNet]
  3. H. Brézis, F. Golse, R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas. C. R. Acad. Sci. Paris 321 (1995) 953-959.
  4. S. Cordier, P. Degond, P. Markowich, C. Schmeiser, Traveling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit. Asymptot. Anal. 11 (1995) 209-224.
  5. S. Cordier, E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm. Partial Differential Equations 25 (2000) 1099-1113. [CrossRef] [MathSciNet]
  6. P.C. Fife, Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal. 52 (1973) 205-232. [MathSciNet]
  7. H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121-133. [CrossRef] [MathSciNet]
  8. I. Gasser, The initial time layer problem and the quasi-neutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl. (to appear).
  9. I. Gasser, D. Levermore, P. Markowich, C. Schmeiser, The initial time layer problem and the quasi-neutral limit in the drift-diffusion model (submitted).
  10. A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85-110. [CrossRef] [MathSciNet]
  11. A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007-1033. [CrossRef] [MathSciNet]
  12. A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 83-118.
  13. A. Jüngel, Y.J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385-396. [CrossRef] [MathSciNet]
  14. A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. (to appear).
  15. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villard, Paris (1969).
  16. P.A. Markowich, A singular perturbation analysis of the fundamental semiconductor device equations. SIAM J. Appl. Math. 44 (1984) 896-928. [CrossRef] [MathSciNet]
  17. P.A. Markowich, C. Ringhofer, C. Schmeiser, An asymptotic analysis of one-dimensional models for semiconductor devices. IMA J. Appl. Math. 37 (1986) 1-24. [CrossRef] [MathSciNet]
  18. Y.J. Peng, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system. Nonlinear Anal. TMA 42 (2000) 1033-1054.
  19. P. Raviart, On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion, Lect. Notes of the Summer school in Ile d'Oléron, France (1997) 452-539.
  20. L. Tartar, Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symp. Vol. 4 and Res. Notes Math. 3 (1979) 136-212.
  21. A. Visintin, Strong convergence results related to strict convexity. Comm. Partial Differential Equations 9 (1984) 439-466. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you