Free Access
Volume 37, Number 1, January/February 2003
Page(s) 63 - 72
Published online 15 March 2003
  1. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. [CrossRef] [MathSciNet]
  2. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45-59. [CrossRef] [MathSciNet]
  3. S.C. Brenner and L. Sung, Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321-338. [CrossRef] [MathSciNet]
  4. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer (1997).
  5. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Sér. Rouge 7 (1973) 33-75.
  6. R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comp. 57 (1991) 529-550. [CrossRef] [MathSciNet]
  7. M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Engrg. 19 (1983) 505-520. [CrossRef] [MathSciNet]
  8. P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895-1908. [CrossRef] [MathSciNet]
  9. P. Hansbo and M.G. Larson, A simple nonconforming bilinear element for the elasticity problem. Trends in Computational Structural Mechanics, W.A. Wall et al. Eds., CIMNE (2001) 317-327.
  10. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New Jersey (1987).
  11. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. [CrossRef] [MathSciNet]
  12. R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. [CrossRef] [MathSciNet]
  13. F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, New York (1981).
  14. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. [CrossRef] [MathSciNet]
  15. B. Cockburn, K.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes Comput. Sci. Eng., Springer Verlag (1999).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you