Issue |
ESAIM: M2AN
Volume 39, Number 1, January-February 2005
|
|
---|---|---|
Page(s) | 79 - 108 | |
DOI | https://doi.org/10.1051/m2an:2005002 | |
Published online | 15 March 2005 |
Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
1
Universidad de Chile, Facultad de
Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile, Casilla
170/3, Correo 3, Santiago, Chile and Universidad del
Bío-Bío, Facultad de Ciencias, Departamento de Ciencias
Básicas, Casilla 447, Campus Fernando May, Chillán,
Chile.
jortega@dim.uchile.cl
2
Institut Elie Cartan, Université Henri Poincaré Nancy 1,
BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France. rosier@iecn.u-nancy.fr; takahash@iecn.u-nancy.fr
Received:
8
January
2004
Revised:
23
November
2004
In this paper we investigate the motion of a rigid ball in an
incompressible perfect fluid occupying .
We prove the global in time existence and the uniqueness of
the classical solution for this fluid-structure problem. The proof relies
mainly on weighted estimates for the vorticity associated with
the strong solution of a fluid-structure problem
obtained by incorporating some dissipation.
Mathematics Subject Classification: 35Q35 / 76B03 / 76B99
Key words: Euler equations / fluid-rigid body interaction / exterior domain / classical solutions.
© EDP Sciences, SMAI, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.