Issue |
ESAIM: M2AN
Volume 40, Number 5, September-October 2006
|
|
---|---|---|
Page(s) | 871 - 896 | |
DOI | https://doi.org/10.1051/m2an:2006033 | |
Published online | 16 January 2007 |
A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media
1
Dep. Matemática e Informática, Universidad
Pública de Navarra. Campus de Arrosadía, 31006 Pamplona,
Spain.
2
Dep. Matemática Aplicada, Universidad
de Zaragoza. C.P.S., 50018 Zaragoza, Spain.
Received:
17
May
2005
Revised:
23
May
2006
This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.
Mathematics Subject Classification: 65J05 / 65N30 / 65N38 / 65R20
Key words: Coupling / finite elements / boundary elements / exterior boundary value problem / Helmholtz equation.
© EDP Sciences, SMAI, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.