Issue |
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
|
|
---|---|---|
Page(s) | 1069 - 1083 | |
DOI | https://doi.org/10.1051/m2an/2010052 | |
Published online | 26 August 2010 |
Low-variance direct Monte Carlo simulations using importance weights
Mechanical Engineering Dept., MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA. husain@mit.edu; ngh@mit.edu
Received:
2
June
2009
Revised:
2
January
2010
We present an efficient approach for reducing the statistical uncertainty associated with direct Monte Carlo simulations of the Boltzmann equation. As with previous variance-reduction approaches, the resulting relative statistical uncertainty in hydrodynamic quantities (statistical uncertainty normalized by the characteristic value of quantity of interest) is small and independent of the magnitude of the deviation from equilibrium, making the simulation of arbitrarily small deviations from equilibrium possible. In contrast to previous variance-reduction methods, the method presented here is able to substantially reduce variance with very little modification to the standard DSMC algorithm. This is achieved by introducing an auxiliary equilibrium simulation which, via an importance weight formulation, uses the same particle data as the non-equilibrium (DSMC) calculation; subtracting the equilibrium from the non-equilibrium hydrodynamic fields drastically reduces the statistical uncertainty of the latter because the two fields are correlated. The resulting formulation is simple to code and provides considerable computational savings for a wide range of problems of practical interest. It is validated by comparing our results with DSMC solutions for steady and unsteady, isothermal and non-isothermal problems; in all cases very good agreement between the two methods is found.
Mathematics Subject Classification: 60H30 / 76P05
Key words: DSMC / variance reduction / microscale gas flow
© EDP Sciences, SMAI, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.