Issue |
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
|
|
---|---|---|
Page(s) | 1193 - 1224 | |
DOI | https://doi.org/10.1051/m2an/2010027 | |
Published online | 15 April 2010 |
Resolution of the time dependent Pn equations by a Godunov type scheme having the diffusion limit
CEA, DAM, DIF, 91297 Arpajon, France. gerald.samba@cea.fr
Received:
5
March
2009
Revised:
26
October
2009
We consider the Pn model to approximate the time dependent transport equation in one dimension of space. In a diffusive regime, the solution of this system is solution of a diffusion equation. We are looking for a numerical scheme having the diffusion limit property: in a diffusive regime, it has to give the solution of the limiting diffusion equation on a mesh at the diffusion scale. The numerical scheme proposed is an extension of the Godunov type scheme proposed by Gosse to solve the P1 model without absorption term. It requires the computation of the solution of the steady state Pn equations. This is made by one Monte-Carlo simulation performed outside the time loop. Using formal expansions with respect to a small parameter representing the inverse of the number of mean free path in each cell, the resulting scheme is proved to have the diffusion limit. In order to avoid the CFL constraint on the time step, we give an implicit version of the scheme which preserves the positivity of the zeroth moment.
Mathematics Subject Classification: 82C70 / 35B40 / 74S10
Key words: Time-dependent transport / Pn model / diffusion limit / finite volume method / Riemann solver
© EDP Sciences, SMAI, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.