Issue |
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
|
|
---|---|---|
Page(s) | 1287 - 1314 | |
DOI | https://doi.org/10.1051/m2an/2013068 | |
Published online | 09 July 2013 |
Numerical analysis of parallel replica dynamics
School of Mathematics, University of Minnesota, 206 Church St SE, 127 Vincent Hall, Minneapolis MN 55455, USA.
gsimpson@umn.edu; luskin@umn.edu
Received: 3 April 2012
Revised: 31 January 2013
Parallel replica dynamics is a method for accelerating the computation of processes characterized by a sequence of infrequent events. In this work, the processes are governed by the overdamped Langevin equation. Such processes spend much of their time about the minima of the underlying potential, occasionally transitioning into different basins of attraction. The essential idea of parallel replica dynamics is that the exit distribution from a given well for a single process can be approximated by the distribution of the first exit of N independent identical processes, each run for only 1 / N-th the amount of time. While promising, this leads to a series of numerical analysis questions about the accuracy of the exit distributions. Building upon the recent work in [C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, Monte Carlo Methods Appl. 18 (2012) 119–146], we prove a unified error estimate on the exit distributions of the algorithm against an unaccelerated process. Furthermore, we study a dephasing mechanism, and prove that it will successfully complete.
Mathematics Subject Classification: 60H35 / 65C20 / 65C30 / 70K70 / 74S60
Key words: Accelerated dynamics / rare events / parallel replica
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.