Free Access
Volume 47, Number 5, September-October 2013
Page(s) 1287 - 1314
Published online 09 July 2013
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press 140 (2003). [Google Scholar]
  2. M. Bieniek, K. Burdzy and S. Finch, Non-extinction of a Fleming–Viot particle model. Probab. Theory Relat. Fields (2011). [Google Scholar]
  3. M. Bieniek, K. Burdzy and S. Pal, Extinction of Fleming–Viot-type particle systems with strong drift. Electron. J. Prob. 17 (2012). [Google Scholar]
  4. C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18 (2012) 119–146. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Cattiaux, P. Collet, A. Lambert, S. Martínez, S. Méléard and J. San Martín, Quasi-stationary distributions and diffusion models in population dynamics. Ann. Prob. 37 (2009) 1926–1969. [Google Scholar]
  6. P. Cattiaux and S. Méléard, Competitive or weak cooperative stochastic Lotka–Volterra systems conditioned on non-extinction. J. Math. Biol. 60 (2010) 797–829. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. P. Collet, S. Martínez and J. San Martín, Asymptotic laws for one-dimensional diffusions conditioned to nonabsorption. Ann. Prob. 23 (1995) 1300–1314. [CrossRef] [Google Scholar]
  8. E.B. Davies, Spectral theory and differential operators. Cambridge University Press 42 (1996). [Google Scholar]
  9. P. Del Moral, Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications, Springer (2011). [Google Scholar]
  10. P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft obstacles. Stoch. Anal. Appl. 22 (2004) 1175–1207. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. ESAIM: PS 7 (2003) 171–208. [CrossRef] [EDP Sciences] [Google Scholar]
  12. M. El Makrini, B. Jourdain and T. Lelievre, Diffusion Monte Carlo method: Numerical analysis in a simple case. ESAIM: M2AN 41 (2007) 189–213. [CrossRef] [EDP Sciences] [Google Scholar]
  13. L.C. Evans, Partial Differential Equations. Amer. Math. Soc. 2002. [Google Scholar]
  14. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer Verlag 224 (2001). [Google Scholar]
  15. I. Grigorescu and M. Kang, Hydrodynamic limit for a Fleming-Viot type system. Stoch. Process. Their Appl. 110 (2004) 111–143. [Google Scholar]
  16. D. Haroske and H. Triebel, Distributions, Sobolev spaces, elliptic equations. Europ. Math. Soc. (2008). [Google Scholar]
  17. A. Lejay and S. Maire, Computing the principal eigenvalue of the Laplace operator by a stochastic method. Math. Comput. Simul. 73 (2007) 351–363. [CrossRef] [Google Scholar]
  18. A. Lejay and S. Maire, Computing the principal eigenelements of some linear operators using a branching Monte Carlo method. J. Comput. Phys. 227 (2008) 9794–9806. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Martínez and J. San Martín, Quasi–stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (1994) 911–920. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Martínez and J. San Martín. Classification of killed one-dimensional diffusions. Ann. Probab. 32 (2004) 530–552. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Perez, Implementation of Parallel Replica Dynamics, Personal Communication (2012). [Google Scholar]
  22. D. Perez, B.P. Uberuaga, Y. Shim, J.G. Amar and A.F. Voter, Accelerated molecular dynamics methods: introduction and recent developments. Ann. Reports Comput. Chemistry 5 (2009) 79–98. [CrossRef] [Google Scholar]
  23. M. Rousset, On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38 (2006) 824–844 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  24. W. Rudin, Principles of Mathematical Analysis. McGraw-Hill (1976). [Google Scholar]
  25. D. Steinsaltz and S.N. Evans, Quasistationary distributions for one–dimensional diffusions with killing. Trans. Amer. Math. Soc. 359 (2007) 1285–1324 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  26. A.F. Voter, Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57 (1998) 13985–13988. [CrossRef] [Google Scholar]
  27. A.F. Voter, F. Montalenti and T.C. Germann, Extending the time scale in atomistic simulation of materials. Ann. Rev. Materials Sci. 32 (2002) 321–346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you