Issue |
ESAIM: M2AN
Volume 48, Number 5, September-October 2014
|
|
---|---|---|
Page(s) | 1529 - 1555 | |
DOI | https://doi.org/10.1051/m2an/2014008 | |
Published online | 13 August 2014 |
Mathematical modeling of time-harmonic aeroacoustics with a generalized impedance boundary condition
POEMS, CNRS-INRIA-ENSTA-ParisTech UMR 7231, 828 Boulevard des Maréchaux,
91762 Palaiseau cedex, France.
eric.luneville@ensta.fr; jean-francois.mercier@ensta.fr
Received:
3
December
2012
Revised:
18
May
2013
We study the time-harmonic acoustic scattering in a duct in presence of a flow and of a discontinuous impedance boundary condition. Unlike a continuous impedance, a discontinuous one leads to still open modeling questions, as in particular the singularity of the solution at the abrupt transition and the choice of the right unknown to formulate the scattering problem. To address these questions we propose a mathematical approach based on variational formulations set in weighted Sobolev spaces. Considering the discontinuous impedance as the limit of a continuous boundary condition, we prove that only the problem formulated in terms of the velocity potential converges to a well-posed problem. Moreover we identify the limit problem and determine some Kutta-like condition satisfied by the velocity: its convective derivative must vanish at the ends of the impedance area. Finally we justify why it is not possible to define limit problems for the pressure and the displacement. Numerical examples illustrate the convergence process.
Mathematics Subject Classification: 35J20 / 35J05
Key words: Aeroacoustics / scattering of sound in flows / treated boundary / Myers condition / finite elements / variational formulations
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.