Free Access
Issue
ESAIM: M2AN
Volume 48, Number 5, September-October 2014
Page(s) 1529 - 1555
DOI https://doi.org/10.1051/m2an/2014008
Published online 13 August 2014
  1. K. Ingard, Influence of Fluid Motion Past a Plane Boundary on Sound Reflection, Absorption, and Transmission. J. Acoust. Soc. Am. 31 (1959) 1035–1036. [CrossRef] [Google Scholar]
  2. M. Myers, On the acoustic boundary condition in the presence of flow. J. Acoust. Soc. Am. 71 (1980) 429–434. [Google Scholar]
  3. W. Eversman and R.J. Beckemeyer, Transmission of Sound in Ducts with Thin Shear layers-Convergence to the Uniform Flow Case. J. Acoust. Soc. Am. 52 (1972) 216–220. [CrossRef] [Google Scholar]
  4. B.J. tester, Some Aspects of “Sound” Attenuation in Lined Ducts containing Inviscid Mean Flows with Boundary Layers. J. Sound Vib. 28 (1973) 217–245 [CrossRef] [Google Scholar]
  5. G. Gabard and R.J. Astley, A computational mode-matching approach for sound propagation in three-dimensional ducts with flow. J. Acoust. Soc. Am. 315 (2008) 1103–1124. [Google Scholar]
  6. G. Gabard, Mode-Matching Techniques for Sound Propagation in Lined Ducts with Flow. Proc. of the 16th AIAA/CEAS Aeroacoustics Conference. [Google Scholar]
  7. R. Kirby, A comparison between analytic and numerical methods for modeling automotive dissipative silencers with mean flow. J. Acoust. Soc. Am. 325 (2009) 565–582 [Google Scholar]
  8. R. Kirby and F.D. Denia, Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. J. Acoust. Soc. Am. 122 (2007) 71–82. [CrossRef] [Google Scholar]
  9. Y. Aurégan and M. Leroux, Failures in the discrete models for flow duct with perforations: an experimental investigation. J. Acoust. Soc. Am. 265 (2003) 109–121 [Google Scholar]
  10. E.J. Brambley, Low-frequency acoustic reflection at a hardsoft lining transition in a cylindrical duct with uniform flow. J. Engng. Math. 65 (2009) 345–354. [CrossRef] [Google Scholar]
  11. S. Rienstra and N. Peake, Modal Scattering at an Impedance Transition in a Lined Flow Duct. Proc. of 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, USA (2005). [Google Scholar]
  12. S.W. Rienstra, Acoustic Scattering at a Hard-Soft Lining Transition in a Flow Duct. J. Engrg. Math. 59 (2007) 451–475. [CrossRef] [Google Scholar]
  13. S. Rienstra, A classification of duct modes based on surface waves. Wave Motion 37 (2003) 119–135. [CrossRef] [Google Scholar]
  14. E.J. Brambley and N. Peake, Surface-waves, stability, and scattering for a lined duct with flow. Proc. of AIAA Paper (2006) 2006–2688. [Google Scholar]
  15. B.J. tester, The Propagation and Attenuation of sound in Lined Ducts containing Uniform or “Plug” Flow. J. Acoust. Soc. Am. 28 (1973) 151–203 [Google Scholar]
  16. P.G. Daniels, On the Unsteady Kutta Condition. Quarterly J. Mech. Appl. Math. 31 (1985) 49-75. [CrossRef] [Google Scholar]
  17. D.G. Crighton, The Kutta condition in unsteady flow. Ann. Rev. Fluid Mech. 17 (1985) 411–445. [CrossRef] [Google Scholar]
  18. M. Brandes and D. Ronneberger, Sound amplification in flow ducts lined with a periodic sequence of resonators. Proc. of AIAA paper, 1st AIAA/CEAS Aeroacoustics Conference, Munich, Germany (1995) 95–126. [Google Scholar]
  19. Y. Aurégan, M. Leroux and V. Pagneux, Abnormal behaviour of an acoustical liner with flow. Forum Acusticum, Budapest (2005). [Google Scholar]
  20. B. Regan and J. Eaton, Modeling the influence of acoustic liner non-uniformities on duct modes. J. Acoust. Soc. Am. 219 (1999) 859–879. [Google Scholar]
  21. K.S. Peat and K.L. Rathi, A Finite Element Analysis of the Convected Acoustic Wave Motion in Dissipative Silencers. J. Acoust. Soc. Am. 184 (1995) 529–545. [Google Scholar]
  22. W. Eversman, The Boundary condition at an Impedance Wall in a Non-Uniform Duct with Potential Mean Flow. J. Acoust. Soc. Am. 246 (2001) 63–69. [Google Scholar]
  23. S.N. Chandler-Wilde and J. Elschner, Variational Approach in Weighted Sobolev Spaces to Scattering by Unbounded Rough Surfaces. SIAM J. Math. Anal. SIMA 42 (2010) 2554–2580. [CrossRef] [Google Scholar]
  24. B. Guo and C. Schwab, Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487–519. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Dambrine and G. Vial, A multiscale correction method for local singular perturbations of the boundary. ESAIM: M2AN 41 (2007) 111–127. [CrossRef] [EDP Sciences] [Google Scholar]
  26. P. Ciarlet and S. Kaddouri, Multiscaled asymptotic expansions for the electric potential: surface charge densities and electric fields at rounded corners. Math. Models Methods Appl. Sci. 17 (2007) 845–876. [CrossRef] [Google Scholar]
  27. S. Tordeux, G. Vial and M. Dauge, Matching and multiscale expansions for a model singular perturbation problem. C. R. Acad. Sci. Paris Ser. I 343 (2006) 637–642. [CrossRef] [Google Scholar]
  28. M. Costabel, M. Dauge and M. Surib, Numerical Approximation of a Singularly Perturbed Contact Problem. Computer Methods Appl. Mech. Engrg. 157 (1998) 349–363. [Google Scholar]
  29. A.-S. Bonnet-Ben Dhia, L. Dahi, E. Lunéville and V. Pagneux, Acoustic diffraction by a plate in a uniform flow. Math. Models Methods Appl. Sci. 12 (2002) 625–647. [CrossRef] [Google Scholar]
  30. D. Martin, Code éléments finis MELINA. Available at http://anum-maths.univ-rennes1.fr/melina/danielmartin/melina/www/somm˙html/fr-main.html [Google Scholar]
  31. S. Job, E. Lunéville and J.-F. Mercier, Diffraction of an acoustic wave in a uniform flow: a numerical approach. J. Comput. Acoust. 13 (2005) 689–709. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you