Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
|
|
---|---|---|
Page(s) | 1557 - 1581 | |
DOI | https://doi.org/10.1051/m2an/2014010 | |
Published online | 09 September 2014 |
- Th. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. [CrossRef] [Google Scholar]
- Th. Apel, A.-M. Sändig, J.R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63–85. [CrossRef] [MathSciNet] [Google Scholar]
- R. Araya, E. Behrens, R. Rodríguez, An adaptive stabilized finite element scheme for a water quality model. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2800–2812. [CrossRef] [MathSciNet] [Google Scholar]
- R. Araya, E. Behrens, R. Rodríguez, A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105 (2006) 193–216. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, Error-Bounds for Finite Element Method. Numer. Math. 16 (1971) 322–333. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, M.B. Rosenzweig, A finite element scheme for domains with corners. Numer. Math. 20 (1972/73) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Belhachmi, C. Bernardi, S. Deparis, Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105 (2006) 217–247. [Google Scholar]
- E. Casas, L2-estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627–632. [CrossRef] [MathSciNet] [Google Scholar]
- P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 9 (1975) 77–84. [Google Scholar]
- C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: Applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. [Google Scholar]
- C. D’Angelo, A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18 (2008) 1481–1504. [Google Scholar]
- W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
- K. Eriksson, Improved accuracy by adapted mesh-refinements in the finite element method. Math. Comput. 44 (1985) 321–343. [CrossRef] [Google Scholar]
- L.C. Evans, Partial diferential equations. Grad. Stud. Math., vol. 19. American Mathematical Society, Providence, RI (1998). [Google Scholar]
- E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equations 7 (1982) 77–116. [Google Scholar]
- F. Gaspoz, P. Morin, A. Veeser, A posteriori error estimates with point sources, in preparation (2013). [Google Scholar]
- D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224. Springer-Verlag, Berlin (1983). [Google Scholar]
- J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations. Oxford Science Publications (1993). [Google Scholar]
- T. Kilpeläinen, Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae 38 (1997) 29–35. [Google Scholar]
- V.A. Kozlov, V.G. Maz’ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surv. Monogr., vol. 52. American Mathematical Society, Providence, RI (1997). [Google Scholar]
- A. Kufner, Weighted Sobolev spaces, A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1985). Translated from the Czech. [Google Scholar]
- P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18 (2008) 707–737. [Google Scholar]
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972) 207–226. [Google Scholar]
- B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 192 (1974) 261–274. [CrossRef] [MathSciNet] [Google Scholar]
- J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. III. Ser. 16 (1962) 305–326. [Google Scholar]
- R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction. Edited by R.A. DeVore, A. Kunoth. Multiscale, nonlinear and adaptive approximation. Springer, Berlin (2009) 409–542. [Google Scholar]
- B. Opic, A. Kufner, Hardy-type inequalities, Pitman Res. Notes Math. Ser., vol. 219. Longman Scientific & Technical, Harlow (1990). [Google Scholar]
- L.R. Scott, Finite Element Convergence for Singular Data. Numer. Math. 21 (1973) 317–327. [CrossRef] [MathSciNet] [Google Scholar]
- K.G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31 (2011) 947–970. [Google Scholar]
- L.R. Scott, S. Zhang, Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
- T.I. Seidman, M.K. Gobbert, D.W. Trott, M. Kružík, Finite element approximation for time-dependent diffusion with measure-valued source. Numer. Math. 122 (2012) 709–723. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.