Free Access
Issue
RAIRO. Anal. numér.
Volume 11, Number 1, 1977
Page(s) 75 - 92
DOI https://doi.org/10.1051/m2an/1977110100751
Published online 01 February 2017
  1. 1. J. R. CANNON, Error Estimates for Some Unstable Continuation Problems, S.I.A.M. J., Vol. 12, 1964, pp. 270-284. [MR: 168897] [Zbl: 0134.08501]
  2. 2. J. R. CANNON and J. DOUGLAS, Jr., The Approximation of Harmonic and Parabolic Functions on Half-Spaces from Interior Data, Numerical Analysis of Partial Differential Equations (C.I.M.E., 2e Ciclo, Ispra, 1967), pp. 193-230. [MR: 243755] [Zbl: 0253.65067]
  3. 3. J. DOUGLAS, Jr., A Numerical Method for Analytic Continuation, in Boundary Value Problems in Differential Equations, R. E. LANGER (Editor), University of Wisconsin Press, Madison, 1960, pp. 179-189. [MR: 117866] [Zbl: 0100.12405]
  4. 4. J. DOUGLAS, Jr., Unstable Physical Problems and their Numerical Approximation, Lecture Notes, Rice University, Houston, Texas.
  5. 5. B. A. FUKS, Introduction to the Theory of Analytic Functions of Several Complex Variables. OGIZ. Moscow, 1948; English transl., Amer. Math. Soc, Transl., Vol. 8, 1963. [Zbl: 0040.19002] [MR: 168793]
  6. 6. S. I. GASS, Linear Programming Methods and Applications, McGraw-Hill, New York, 1958. [MR: 96554] [Zbl: 0081.36702]
  7. 7. E. HILLE, Analytic Function Theory, Vol. II, Blaisdell, Waltham, Mass., 1962. [MR: 201608] [Zbl: 0102.29401]
  8. 8. K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. [MR: 133008] [Zbl: 0117.34001]
  9. 9. G. JOHNSON, Jr., Harmonic Functions on the Unit Disc I, Illinois J. Math., Vol. 12, 1968, pp. 366-385. [MR: 229846] [Zbl: 0159.40502]
  10. 10. H. D. MEYER, Thesis, The University of Chicago, Chicago, Illinois.
  11. 11. H. D. MEYER, A Representation for a Distributional Solution of the Heat Equation, SIAM J. Math. Anal., Vol. 5, 1974. [MR: 358054] [Zbl: 0253.35047]
  12. 12. H. D. MEYER, Half-plane Representations and Harmonie Continuation, SIAM J. Math. Anal., Vol. 7. 1976, pp. 713-722; also (with SIAM permission) in Improperly Posed Boundary Value Problems, Pitman Publishing, London, 1975, pp. 24-38. [MR: 422642] [Zbl: 0336.35030]
  13. 13. R. SAYLOR, Thesis, Jlice University, Houston, Texas, 1966.
  14. 14. R. SAYLOR, Numerical Elliptic Continuation, SIAM J. Numer. Anal., Vol. 4, 1967, pp. 575-581. [MR: 222461] [Zbl: 0161.35904]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you