Free Access
Issue
RAIRO. Anal. numér.
Volume 12, Number 3, 1978
Page(s) 267 - 282
DOI https://doi.org/10.1051/m2an/1978120302671
Published online 01 February 2017
  1. 1. P. JAMET et P. A. RAVIART, Numerieal Solution of the Stationnary Navier-Stokes Equations by Finite Element Methods, Lecture Notes in Computer Science, vol. 10, Springer Verlag, 1973. [MR: 448951] [Zbl: 0285.76007] [Google Scholar]
  2. 2. V. A. KONDRAT'EV, Boundary Problems for Elliptic Equations in Domains with Conic or Angular Points, Trans. Moscow Math. Soc, 1967, p. 227-313. [Zbl: 0194.13405] [Google Scholar]
  3. 3. R. Lozi, A Computing Method for Bifurcation Boughs of Nonlinear Eigenvalue Problems, Bull. A.M.S., vol. 81, n° 6, novembre 1975, p. 1127-1129. [MR: 380542] [Zbl: 0299.65048] [Google Scholar]
  4. 4. M. MERIGOT, Solutions en normes Lp des problèmes elliptiques dans les polygones plansThèse, Nice, 1974. [Google Scholar]
  5. 5. M. MERIGOT, Régularité du problème de Stokes dans un polygone (à paraître) [Zbl: 0277.35027] [Google Scholar]
  6. 6. J. E. OSBORN, Regularity of Solutions of the Stokes Problemin a Polygonal Domain Numerieal Solution of Partial Differential Equations III, Academic Press, New York, 1976. [MR: 467032] [Zbl: 0344.65049] [Google Scholar]
  7. 7. J. B. SEIF, On the Green's Function for the Biharmonic Equationin an Infinité WedgeTrans. A.M.S., vol. 182, août 1973, p. 241-260. [MR: 325989] [Zbl: 0271.31005] [Google Scholar]
  8. 8. G. STRANG et J. FIX, An Analysis of the Finite Element Method, Prentice Hall, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you