Free Access
Issue |
RAIRO. Anal. numér.
Volume 13, Number 1, 1979
|
|
---|---|---|
Page(s) | 31 - 54 | |
DOI | https://doi.org/10.1051/m2an/1979130100311 | |
Published online | 01 February 2017 |
- Part a: literature cited [Google Scholar]
- 1. D. ARCHER, An O(h4) cubic spline collocation method for quasilinear parabolic equations, S.I.A.M, J. Numer. Anal., 14, 1977, p. 620-637. [MR: 461934] [Zbl: 0366.65054] [Google Scholar]
- 2. J. H. BRAMBLE and R. SCOTT, Simultaneous approximation in scales of Banach spaces (to appear). [MR: 501990] [Zbl: 0404.41005] [Google Scholar]
- 3. J. H. BRAMBLE,A. SCHATZ, V. THOMEE and L. B. WAHLBIN, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, S.I.A.M., J. Numer. Anal, 14, 1977, p. 218-241. [MR: 448926] [Zbl: 0364.65084] [Google Scholar]
- 4. J. C. CAVENDISH and C. A. HALL, L∞-convergence of collocation and Galerkin approximations to linear two-point parabolic problems, Aequationes Math , 11, 1974, p. 230-249. [EuDML: 136462] [MR: 362951] [Zbl: 0301.65064] [Google Scholar]
- 5. P. G. CIARLET and P.-A. RAVIART , Interpolation theory over curved elements with applications to finite element methods, Comp. Meth. Appl. Mech. Eng., l, 1972, p. 217-249. [MR: 375801] [Zbl: 0261.65079] [Google Scholar]
- 6. J. Jr. DOUGLAS and T. DUPONT, A finite element collocation method for quasilinear parabolic equations, Math. Comp, 27, 1973, p. 17-18. [MR: 339508] [Zbl: 0256.65050] [Google Scholar]
- 7. J. Jr. DOUGLAS,T. DUPONT and M. WHEELER, Some superconvergence results for an H1-Galerkin procedure for the heat equation, Lecture Notes in Comp. Sci, 10, 1974,p. 491-504. [MR: 451774] [Zbl: 0285.65068] [Google Scholar]
- 8. F. NATTERER, Uber punktweise Konvergenz finiter Elemente, Num. Math., 25, 1975, p. 67-77. [EuDML: 132361] [MR: 474884] [Zbl: 0331.65073] [Google Scholar]
- 9. J. NITSCHE, Zur Konvergenz von Naherungsverfahren bezüglich verschiedener Normen, Num. Math., 15, 1970, p. 224-228. [EuDML: 131986] [MR: 279509] [Zbl: 0221.65092] [Google Scholar]
- 10. J. NITSCHE, L∞-convergence of finite element approximation. 2nd Conference on Finite Elements, Rennes, 1975. [Zbl: 0362.65088] [Google Scholar]
- 11. J. NITSCHE, Über L∞-Abschatzungen von Projektionen auf finite Elemente, Bonner Mathematische Schriften, 89, 1976, p. 13-30. [MR: 451780] [Zbl: 0358.65094] [Google Scholar]
- 12. J. NITSCHE, L∞-convergence of finite element approximations, Lecture Notes in Math., 606, 1977, p. 261-274. [MR: 488848] [Zbl: 0362.65088] [Google Scholar]
- 13. J. NITSCHE and A. SCHATZ, On local approximation properdes of L2-projection on spline-subspaces, Appl Anal., 2, 1972, p. 161-168. [MR: 397268] [Zbl: 0239.41007] [Google Scholar]
- 14. R. SCOTT, Optimal L∞ estimates for the finite element method on irregular meshes, Math. Comp., 30, 1976, p. 681-697. [MR: 436617] [Zbl: 0349.65060] [Google Scholar]
- 15. V. THOMÉE, Spline-Galerkin methods for initial-value problems with constant coefficients, Lecture Notes in Math., 363, 1974, p. 164-175. [MR: 426450] [Zbl: 0298.65061] [Google Scholar]
- 16. L. WAHLBIN, On maximum norm error estimates for Galerkin approximation to one-dimensional second order parabolic boundary value problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 177-182. [MR: 383785] [Zbl: 0295.65053] [Google Scholar]
- 17. M. B. WHEELER, L∞ estimates of optimal orders for Galerkin methods of one dimensional second order parabolic and hyperbolic equations, S.I.A.M., J. Numer. Anal., 10, 1973, p. 908-913. [MR: 343658] [Zbl: 0266.65074] [Google Scholar]
- 18. M. ZLAMAL, Curved elements in the finite element method, S.I.A.M., J. Numer. Anal., 10, 1973, p. 229-240 and 11, 1974, p. 347-362. [Zbl: 0285.65067] [Google Scholar]
- Part b: additionat literature [Google Scholar]
- 19. R. S. ANDERSSEN, The numerical solution of parabolic differential equations using variational methods, Numer. Math., 13 1969, p. 129-145. [EuDML: 131904] [MR: 255082] [Zbl: 0183.44701] [Google Scholar]
- 20. R. S. NDERSSEN, A class of densely invertible parabolic operator equations, Bull. Austral Math. Soc, 1, 1969, p. 363-374. [MR: 259366] [Zbl: 0177.14203] [Google Scholar]
- 21. G. A. BAKER,J. BRAMBLE and V. THOMÉE, Single step Galerkin approximations or parabolic problems, Math. Comp., 31, 1977, p. 818-847. [MR: 448947] [Zbl: 0378.65061] [Google Scholar]
- 22. W. E. BOSARGE Jr.,O. G. JOHNSON and C. L. SMITH, A direct method approximation to the linear parabolic regulator problem over multivaraite spline bases, S.I.A.M., J. Numer. Anal, 10, 1973, p. 35-49. [MR: 317146] [Zbl: 0257.49011] [Google Scholar]
- 23. J. H. BRAMBLE and V. THOMÉE, Semidiscrete-least squares methods for a parabolic boundary value problem, Math. Comp., 26, 1972,p. 633-648. [MR: 349038] [Zbl: 0268.65060] [Google Scholar]
- 24. J. DESCLOUX, On the numerical integration of the heat equation, Numer. Math.,15, 1970, p. 371-381. [EuDML: 132003] [MR: 269140] [Zbl: 0211.19202] [Google Scholar]
- 25. J. DOUGLAS Jr., A survey of methods for parabolic differential equations, Advances in Computers, 2, 1961, p. 1-54. [MR: 142211] [Zbl: 0133.38503] [Google Scholar]
- 26. J. DOUGLAS Jr. and T. DUPONT, The numerical solution of waterflooding problems in petroleum engineering by variational methods, Studies in Numer. Anal., 2, 1968, p. 53-63. [MR: 269141] [Zbl: 0245.65048] [Google Scholar]
- 27. J. DOUGLAS Jr. and T. DUPONT, Galerkin methods for parabolic equations, S.I.A.M., J. Numer. Anal., 7, 1970, p. 575-626. [MR: 277126] [Zbl: 0224.35048] [Google Scholar]
- 28. J. DOUGLAS Jr. and T. DUPONT, A finite element collocation method for the heat equation, Symposia Mathematica, 10, 1972, p, 403-410. [MR: 373329] [Zbl: 0274.65034] [Google Scholar]
- 29. J. DOUGLAS Jr. and T. D UPONT, A finite element collocation method for nonlinear parabolic equations, Math. Comp., 27, 1973, p. 17-28. [MR: 339508] [Zbl: 0256.65050] [Google Scholar]
- 30. J. DOUGLAS Jr. and T. DUPONT, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math., 20, 1973, p. 213-237. [EuDML: 132186] [MR: 319379] [Zbl: 0234.65096] [Google Scholar]
- 31. J. DOUGLAS Jr. and T. DUPONT, Collocation methods for parabolic equations in a single space variable (based on C1-piecewise-polynomial spaces), Lecture Notes in Math., 385, 1974. [MR: 483559] [Zbl: 0279.65097] [Google Scholar]
- 32. J. DOUGLAS Jr.,T. DUPONT and P. PERCELL, A time-stepping method for Galerkin approximations for nonlinear parabolic equations (to appear). [MR: 483542] [Zbl: 0381.65058] [Google Scholar]
- 33. T. DUPONT, L2 error estimates for projection methods for parabolic equations in approximating domains, Mathematical aspects of finite elements in partial differential equations, ed. de Boor, Academic Press, New York, 1974, p. 313-352 [MR: 349031] [Zbl: 0382.65050] [Google Scholar]
- 34. B. A. FINLAYSON, Convergence of the Galerkin method for nonlinear problems involving chemical reaction, S.I.A.M., J. Numer. Anal., 8, 1971, p. 316-324. [MR: 285142] [Zbl: 0221.65173] [Google Scholar]
- 35. G. FIX and N. NASSIF, On finite element approximation to time dependent problems, Numer. Math., 19, 1972, p. 127-135. [EuDML: 132137] [MR: 311122] [Zbl: 0244.65063] [Google Scholar]
- 36. H. GAJEWSKI and K. ZACHARIAS, Zur starken Konvergenz des Galerkinverfahrens bei einer Klasse pseudo-parabolischer partieller Differentialgleichungen, Math. Nachr., 47, 1970, p. 365-376. [MR: 287144] [Zbl: 0217.53102] [Google Scholar]
- 37. G. GEYMONAT and M. SIBONY, Approximation de certaines équations paraboliques non linéaires, Calcolo, 13, 1976, p. 213-256. [MR: 455473] [Zbl: 0336.35058] [Google Scholar]
- 38. H.-P. HELFRICH, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta math., 13, 1974, p. 219-235. [EuDML: 154266] [MR: 356513] [Zbl: 0323.65037] [Google Scholar]
- 39. H.-P. HELFRICH, Lokale Konvergenz des Galerkinverfahrens bei Gleichungen vom parabolischen Typ in Hilberträumen (to appear). [Google Scholar]
- 40. I. HLAVACEK, Variational principles for parabolic equations, Api. Mat., 14, 1969, p. 278-297. [EuDML: 14603] [MR: 255988] [Zbl: 0182.13803] [Google Scholar]
- 41. I. HLAVACEK, On a semi-variational method for parabolic equations II, Apl. Math., 18, 1973, p. 43-64. [EuDML: 14789] [MR: 323124] [Zbl: 0253.65065] [Google Scholar]
- 42. D. C. JOYCE, Survey of extrapolation processes in numerical analysis, S.I.A.M., Rev., 13, 1971, p. 435-490. [MR: 307435] [Zbl: 0229.65005] [Google Scholar]
- 43. J. T. KING, The approximate solution of parabolic initial boundary value problems by weighted least-squares methods, S.I.A.M., J. Numer. Anal., 9, 1972, p. 215-229. [MR: 305626] [Zbl: 0245.65051] [Google Scholar]
- 44. H. D. MEYER, The numerical solution of nonlinear parabolic problems by variational Methods, S.I.A.M., J. Numer. Anal., 10, 1973, p. 700-722. [MR: 339518] [Zbl: 0262.65066] [Google Scholar]
- 45. P.A. RAVIART, Approximation des équations d'évolution par des méthodes variationnelles, Numer. Anal, of part. diff. equations, éd. J. L. Lions, C.I.M.E., 1968, p. 359-406. [MR: 245227] [Google Scholar]
- 46. P. A. RAVIART, The use of numerical integration in finite element methods for solving parabolic equations, Topics in Numer. Anal., éd.J. J. Miller, Academic Press, 1973, p. 233-264. [MR: 345428] [Zbl: 0293.65086] [Google Scholar]
- 47. R. E. SHOWALTER, A priori error estimates for approximation of parabolic boundary value problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 456-463. [MR: 391534] [Zbl: 0323.35044] [Google Scholar]
- 48. P. E. SOBOLEVSK II, The Bubnov-Galerkin method for parabolic equations in Hilbert space, S.M.D., 9, 1968, p. 154-157. [MR: 223705] [Zbl: 0203.40402] [Google Scholar]
- 49. V. THOMÉE, Convergence estimates for semi-discrete Galerkin methods for initial value problems, Lecture Notes in Math., 333, 1973, p. 243-262. [MR: 458948] [Zbl: 0267.65069] [Google Scholar]
- 50. V. THOMÉE, Some convergence results for Galerkin methods for parabolic boundary value problems, Math. Aspects of Finite Elements in Partial Diff. Equ., ed. C de Boor, Academic Press, New York, 1974, p. 55-88. [MR: 657811] [Zbl: 0343.65046] [Google Scholar]
- 51. V. THOMÉE and L. WAHLBIN, On Galerkin methods in semilinear parabolic problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 378-389. [MR: 395269] [Zbl: 0307.35007] [Google Scholar]
- 52. B. WENDROFF, Spline-Galerkin methods for initial value problems with variable coefficients, Lecture Notes in Math., 363, 1974, p. 189-195. [MR: 431718] [Zbl: 0298.65062] [Google Scholar]
- 53. M. B. WHEELER, An $H^{-1}$ Galerkin method for parabolic problems in a single space variable, S.I.A.M., J. Numer, Anal., 12, 1975, p. 803-817. [MR: 413556] [Zbl: 0331.65075] [Google Scholar]
- 54. M. ZLAMAL, Finite element methods for nonlinear parabolic equations, R.A.I.R.O. Anal. Num., 11, 1977, p. 93-107. [EuDML: 193290] [MR: 502073] [Zbl: 0385.65049] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.