Free Access
RAIRO. Anal. numér.
Volume 15, Number 1, 1981
Page(s) 3 - 25
Published online 31 January 2017
  1. 1. K. BABA and S. YOSHII, An upwind scheme for convective diffusion equation by finite element method, Proceedings of VIIIth International Congress on Application of Mathematics in Engineering, Weimar/DDR, 1978. [Zbl: 0386.76067] [Google Scholar]
  2. 2. J. H. BRAMBLE and S. R. HILBERT, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16 (1971), 362-369. [EuDML: 132041] [MR: 290524] [Zbl: 0214.41405] [Google Scholar]
  3. 3. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolationin Rn with applications to finite element methods, Arch. Rational Mech. AnaL,46 (1971), 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  4. 4. P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), 17-31. [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
  5. 5. H. FUJII, Some remarks on finite element analysis of time-dependent field problems,Theory and practice in finite element structural analysis, ed. by Yamada, Y. and Gallagher, R. H., 91-106, Univ. of Tokyo Press, Tokyo, 1973. [Zbl: 0373.65047] [Google Scholar]
  6. 6. R. GORENFLO, Energy conserving discretizations of diffusion equations, Paper submitted for publication in the Proceedings of the Conference on Numerical Methods in Keszthely/Hungary, 1977. [Zbl: 0466.76086] [Google Scholar]
  7. 7. F. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ and A. R. MITCHELL, An " upwind "finite element scheme for two dimensional convective-transport equation,Int. J. Num. Meth. Engng., 11 (1977), 131-143. [Zbl: 0353.65065] [Google Scholar]
  8. 8. F. C. HEINRICH and O. C. ZIENKIEWICZ, The finite element method and " upwinding " techniques in the numerical solution of confection dominated flow problems, Preprint for the ASME winter annual meeting on fini te element methods for convection dominated flows, 1979. [Zbl: 0436.76062] [Google Scholar]
  9. 9. T. IKEDA, Artificial viscosity infinite element approximations to the diffusion equation with drift terms, to appear in Lecture Notes in Num. Appl. Anal., 2. [Zbl: 0468.76087] [Google Scholar]
  10. 10. H. KANAYAMA, Discrete models for salinity distribution in a bay-Conservation law and maximum principle, to appear in Theoretical and Applied Mechanics, 28. [Google Scholar]
  11. 11. F. KIKUCHI, The discrete maximum principle and artificial viscosity in finite element approximations to convective diffusion equations, Institute of Space and Aeronautical Science, University of Tokyo, Report n° 550 (1977). [Google Scholar]
  12. 12. M. TABATA, A finite element approximation corresponding to the upwind finite differencing, Memoirs of Numerical Mathematics, 4 (1977), 47-63. [MR: 448957] [Zbl: 0358.65102] [Google Scholar]
  13. 13. M. TABATA, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ., 18 (1978), 327-351. [MR: 495024] [Zbl: 0391.65038] [Google Scholar]
  14. 14. M. TABATA, $L^\infty $-analysis of the finite element method, Lecture Notes in Num. Appl. Anal, 1 (1979) 25-62, Kinokuniya, Tokyo. [MR: 690436] [Zbl: 0458.65096] [Google Scholar]
  15. 15. M. TABATA, Some applications of the upwind finite element method, Theoretical and Applied Mechanics, 27 (1979), 277-282, Univ. of Tokyo Press, Tokyo. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you