Free Access
Issue
RAIRO. Anal. numér.
Volume 15, Number 1, 1981
Page(s) 27 - 39
DOI https://doi.org/10.1051/m2an/1981150100271
Published online 31 January 2017
  1. 1. R. Bouc, M. DEFILIPPI, G. Iooss, On a problem of forced nonlinear oscillation. Numerical example of bifurcation into an invariant torus. Nonlinear Analysis, Theory,Methods and Applications, 2, n° 2, 211-224 (1978). [MR: 512284] [Zbl: 0411.34022]
  2. 2. M. DEFILIPPI, Quelques aspects des oscillations sous-harmoniques et irregulieres de deux circuits couplés non linéaires. Thèse de Doctorat d'État, Marseille (1974).
  3. 3. J. K. HALE, Ordinary differential équations. Wiley Interscience (1969). [MR: 419901] [Zbl: 0186.40901]
  4. 4. G. Iooss, D. D. JOSEPH, Elementary stability and bifurcation theory. Chap. X (à paraître). [Zbl: 0443.34001]
  5. 5. D. D. JOSEPH, Remarks about bifurcation and stability of quasiperiodic solutionswhich bifurcate from periodic solutions of the Navier-Stokes équations. SpringerLecture Notes in Mathematics, n° 322 (1973). [Zbl: 0268.35009]
  6. 6. T. KATO, Perturbation theory for linear operators. Springer-Verlag (1976). [MR: 407617] [Zbl: 0342.47009]
  7. 7. L. PUST, Vibrations of nonlinear undampted two-degree of freedom system. Nakladatelstin Cekoslovenske akademieved (1959). [Zbl: 0084.39901]
  8. 8. M. URABE, GalerkwL s procedure for nonlinear periodic System. . Arch. Ration. Mech.Analysis, 20, 120 (1965). [MR: 182771] [Zbl: 0133.35502]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you