Free Access
Issue
RAIRO. Anal. numér.
Volume 16, Number 1, 1982
Page(s) 27 - 37
DOI https://doi.org/10.1051/m2an/1982160100271
Published online 31 January 2017
  1. 1. C BAIOCCHI, Estimation d’erreur dans $L^\infty $ pour les inéquations à obstacle, Proc.Conf. on « Mathemetical Aspects of Finite Element Method » (Rome, 1975), Lecture Notes in Math., 606 (1977), pp. 27-34. [MR: 488847] [Zbl: 0374.65053] [Google Scholar]
  2. 2. C. BAIOCCHI and G. A. Pozzi, Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, R.A.LR.O., Analyse Numér., 11 (1977), pp. 315-340. [EuDML: 193305] [MR: 464607] [Zbl: 0371.65020] [Google Scholar]
  3. 3. A. BENSOUSSAN and J. L. LIONS, C. R. Acad. Sci Paris, A-276 (1973), pp. 1411-1415, 1189-1192, 1333-1338 ; A-278 (1974), pp. 675-679, 747-751. [Zbl: 0264.49006] [Google Scholar]
  4. 4. M. BIROLI, A De Giorgi-Nash-Moser result for a variational inequality, Boll U.M.I, 16-A (1979), pp. 598-605. [MR: 551388] [Zbl: 0424.35035] [Google Scholar]
  5. 5. H. BREZIS, Problèmes unilatéraux, J. Math, pures et appl, 51 (1972), pp. 1-168. [MR: 428137] [Zbl: 0237.35001] [Google Scholar]
  6. 6. F. BREZZI,W. W. HAGER and P. A. RAVIART, Error estimates for the finite element solution of variational inequalities (Part I), Numer. Math., 28 (1977), pp. 431-443. [EuDML: 132496] [MR: 448949] [Zbl: 0369.65030] [Google Scholar]
  7. 7. L. A. CAFFARELLI and D. KINDERLEHRER, Potential methods in variational inequalities, J. Anal Math., 37 (1980), pp. 285-295. [MR: 583641] [Zbl: 0455.49010] [Google Scholar]
  8. 8. M. CHIPOT, Sur la régularité lipscitzienne de la solution d'inéquations elliptiques, J. Math, pures et appl., 57 (1978), pp. 69-76. [MR: 481499] [Zbl: 0335.35038] [Google Scholar]
  9. 9. P. G. CIARLET, The finite element method for elliptic problems, North Holland Ed.Amsterdam (1978). [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  10. 10. P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for thefinite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp.17-31. [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
  11. 11. P. CORTEY DUMONT, Approximation numérique d'une inéquation quasi-variationnelle liée à problème de gestion de stock, R.A I.R.O., Analyse Numér., 14 (1980),pp. 335-346. [EuDML: 193365] [MR: 596539] [Zbl: 0462.65045] [Google Scholar]
  12. 12. J. FREHSE, On the smoothness of variational inequalities with obstacle, Proc. Semester on P.D.E., Banach Center, Warszawa (1978). [Google Scholar]
  13. 13. J. FREHSE and U. Mosco, Variational inequalities with one-sided irregular obstacles, Manuscripta Math., 28 (1979), pp. 219-233. [EuDML: 154637] [MR: 535703] [Zbl: 0447.49006] [Google Scholar]
  14. 14. H. LEWY and G. STAMPACCHIA, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188. [MR: 247551] [Zbl: 0167.11501] [Google Scholar]
  15. 15. E. LOINGER, A finite element approach to a quasi-variational inequality, Calcolo,17 (1980), pp. 197-209. [MR: 631586] [Zbl: 0458.65060] [Google Scholar]
  16. 16.U. Mosco, Implicit variational problems and quasi-variational inequalities, Proc.Summer School on « Nonlinear Operators and the Calculus of Variations » (Bruxelles, 1975), Lecture Notes in Math., 543 (1976), pp. 83-156. [MR: 513202] [Zbl: 0346.49003] [Google Scholar]
  17. 17. J. NITSCHE, $L_\infty $-convergence of finite element approximation, Proc. Conf. on « Mathematical Aspects of Finite Element Methods» (Rome, 1975), Lecture Notes in Math.,606 (1977), pp. 261-274. [MR: 488848] [Zbl: 0362.65088] [Google Scholar]
  18. 18. A. H. SCHATZ and L. B. WAHLBIN, On the quasi-optimality in $L^\infty $ of the $H^1_0$-projection into finite element spaces, to appear. [Zbl: 0483.65006] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you