Free Access
Issue
RAIRO. Anal. numér.
Volume 16, Number 1, 1982
Page(s) 39 - 47
DOI https://doi.org/10.1051/m2an/1982160100391
Published online 31 January 2017
  1. F. CHATELIN, Linear spectral approximation in Banach spaces (to appear). [Zbl: 0517.65036] [Google Scholar]
  2. P. G. CIARLET, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  3. D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order.Springer-Verlag, Berlin-Heidelberg-New York (1977). [MR: 473443] [Zbl: 0361.35003] [Google Scholar]
  4. W. HACKBUSCH, Bemerkungen zur iterierten Defektkorrektur. (To appear in Rev.Roumaine Math. Pure Appl.) (1981). [Zbl: 0475.65030] [MR: 646400] [Google Scholar]
  5. Lin QUN, Some problems about the approximate solution for operator equations. Acta Math. Sinica 22 (1979) 219-230. [MR: 542459] [Zbl: 0397.65070] [Google Scholar]
  6. Lin QUN, Method to increase the accuracy of Lowe-degree finite element solutions... Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam (1980). [MR: 584026] [Zbl: 0438.73056] [Google Scholar]
  7. J. NITSCHE, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer.Math. 11 (1968) 346-348. [EuDML: 131833] [MR: 233502] [Zbl: 0175.45801] [Google Scholar]
  8. A. H. SCHATZ, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. [MR: 373326] [Zbl: 0321.65059] [Google Scholar]
  9. I. H. SLOAN, Improvement by iteration for compact operator equations. Math. Comp. 30(1976) 758-764. [MR: 474802] [Zbl: 0343.45010] [Google Scholar]
  10. H. STETTER, The defect correction principle and discretization methods. Numer. Math.29 (1978) 425-443. [EuDML: 132530] [MR: 474803] [Zbl: 0362.65052] [Google Scholar]
  11. G. STRANG and G FIX, Analysis of the finite element method. Prentice-Hall, EnglewoodCliffs,N. J. (1973). [MR: 443377] [Zbl: 0356.65096] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you