Free Access
RAIRO. Anal. numér.
Volume 17, Number 1, 1983
Page(s) 35 - 65
Published online 31 January 2017
  1. D. J. ALLMAN, On compatible and equilibrium models with linear stresses for stretching of elastic plates, in [27]. [Zbl: 0407.73059] [Google Scholar]
  2. F. BREZZI, Non-standard finite elements for fourth order elliptic problems, in [27]. [Zbl: 0411.41013] [Google Scholar]
  3. G. R. BUSACKER and T. L. SAATY, Finite graphs and network : an introduction with applications, McGraw-Hill, New York, London, Sydney, 1965. [MR: 209176] [Zbl: 0146.20104] [Google Scholar]
  4. P. G. CIARLET, The finite element method for elliptic problems, North-Holland publishing company, Amsterdam, NewYork, Oxford, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. G. DUVAUT and J. L. LIONS, Inequalities in mechanics and physics, Springer-Verlag, Berlin, Heidelberg, NewYork, 1976. [MR: 521262] [Zbl: 0331.35002] [Google Scholar]
  6. M. FORTIN, Approximation des fonctions à divergence nulle par la méthode des éléments finis, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Paris, 1972, vol. 1, 99-103. [MR: 478666] [Zbl: 0277.76024] [Google Scholar]
  7. B. M. FRAEIJS DE VEUBEKE and M. HOGGE, Dual analysis for heat conduction problems by finite elements, Internat. J. Numer. Methods Energ. 5 (1972), 65-82 [Zbl: 0251.65061] [Google Scholar]
  8. V. GIRAULT and P. A. RAVIART, Finite element approximation of the Navier-Stokes equation, Springer-Verlag, Berlin, Heidelberg, New York, 1979. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  9. R. GLOWINSKI and O. PIRONNEAU, On numerical methods for the Stokes problem, in [27]. [Zbl: 0415.76024] [Google Scholar]
  10. B. J. HARTZ and V. B. WATWOOD, An equilibrium stress field model for finite element solution of two-dimensional electrostatic problems, Internat. J. Solids and Structures 4 (1968), 857-873. [Zbl: 0164.26201] [Google Scholar]
  11. J. HASLINGER and I. HLAVACEK, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. 21 (1976), 43-65. [EuDML: 14942] [MR: 398126] [Zbl: 0326.35020] [Google Scholar]
  12. I. HLAVACEK, Convergence of an equilibrium finite element model for plane elastostatics, Apl. Mat. 24 (1979), 427-457. [EuDML: 15121] [MR: 547046] [Zbl: 0441.73101] [Google Scholar]
  13. I. HLAVACEK, The density of solenoidal functions and the convergence of a dual finite element method, Apl. Mat. 25 (1980), 39-55. [EuDML: 15129] [MR: 554090] [Zbl: 0424.65056] [Google Scholar]
  14. C. JOHNSON, On the convergence of a mixed finite element method for plate bending problems, Numer. Math. 21 (1973), 43-62. [EuDML: 132212] [MR: 388807] [Zbl: 0264.65070] [Google Scholar]
  15. C. JOHNSON and B. MERCIER, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Maht. 30 (1978), 103-116. [EuDML: 132541] [MR: 483904] [Zbl: 0427.73072] [Google Scholar]
  16. D. W. KELLY, Bounds on discretization error by special reduced integration of the Lagrange family of finite elements, Internat. J. Numer. Methods Energ. 15 (1980), 1489-1506. [MR: 595369] [Zbl: 0438.73057] [Google Scholar]
  17. M. KRIZEK, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), 46-75. [EuDML: 15223] [MR: 640139] [Zbl: 0488.73072] [Google Scholar]
  18. B. MERCIER, Topics in finite element solution of elliptic problems, Springer-Verlag, Berlin, Heidelberg, New York, 1979. [Zbl: 0445.65100] [Google Scholar]
  19. J. NECAS, Les méthodes directes en théorie des équations elleptiques, Academia, Prague, 1967. [MR: 227584] [Google Scholar]
  20. J. NECAS and I. HLAVACEK, Mahtematical theory of elastic and elasto-plastic bodies : an introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. [MR: 600655] [Zbl: 0448.73009] [Google Scholar]
  21. A. R. S. PONTER, The application of dual minimum theorems to the finite element solution of potential problems with special reference to seepage, Internat. J. Numer. Methods Energ. 4 (1972), 85-93. [MR: 297211] [Zbl: 0254.76095] [Google Scholar]
  22. G. SANDER, Application of the dual analysis principle , Proceedings of the IUTAM Symposium on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège (1971), 167-207. [Google Scholar]
  23. R. TEMAM, Navier-Stokes equations North-Holland publishing company, Amsterdam, New York, Oxford, 1977. [MR: 603444] [Zbl: 0426.35003] [Google Scholar]
  24. J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977. [Google Scholar]
  25. J. M. THOMAS and M. AMARA, Approximation par éléments finis équilibre du système de l'élasticité linéaire, C.R. Acad. Sc. Paris, t. 286 (1978), 1147-1150. [MR: 495556] [Zbl: 0395.73011] [Google Scholar]
  26. J. M. THOMAS and M. AMARA, Equilibrium finite elements for the linear elastic problem, Numer. Math. 33 (1979), 367-383. [EuDML: 132648] [MR: 553347] [Zbl: 0401.73079] [Google Scholar]
  27. [27] Energy methods in finite element analysis, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979. [MR: 536995] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you