Free Access
RAIRO. Anal. numér.
Volume 17, Number 2, 1983
Page(s) 161 - 194
Published online 31 January 2017
  1. R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. A. K. Aziz and I. Babuska, Survey lectures on the mathematical foundations of the finite element method, in: The Mathematical Foundations of the Finite Element Method with Applications to Partial Biffer ential Equations, edited by by A. K. Aziz, Academic Press, New York, 1972, pp. 3-359. [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
  3. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Analyse Numérique 8-R2, 1974, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. J. F. DEBONGNIE, Sur la formulation de Herrmann pour l'étude des solides incompressibles, Journal de Mécanique, Vol. 17, n° 4, 1978, pp. 531-557. [Zbl: 0413.73015] [Google Scholar]
  6. M. ORTIN, Calcul Numérique des Écoulements de Fluides de Bingham et des Fluides Incompressibles par la méthode des Éléments Finis, Thèse de Doctorat d'État ès Sciences, Université Paris VI, 1972. [Google Scholar]
  7. V. GIRAULT and P. A. AVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture notes in Mathematics, Springer Verlag, Berlin, 1979. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  8. R. GLOWINSKI,J. L. LIONS and R. RÉMOLIÈRES, Analyse Numérique des Inéquations Variationnelles, Éditions Dunod-Bordas, Paris, 1976. [Zbl: 0358.65091] [Google Scholar]
  9. P. GRISVARD, Behavior of the solutions of an elliptic boundary value problem in a polygonal or a polyhedral domain, in : Numerical Solution of Partial Differ ential Equations, III SYNSPADE 1975, edited by B. Hubbard, Academic Press, NewYork, 1976. [MR: 466912] [Zbl: 0361.35022] [Google Scholar]
  10. C. JOHNSON and . PITKÂRANTA, Analysis of some mixed finite element methods related to reduced integration, Research Report 80.02 R of the Department of Computer Sciences of the Chalmers University of Technology and the University of Göteborg, 1980. [Zbl: 0482.65058] [Google Scholar]
  11. . A. LADYZHENSKAYA and N. N. URAL'CEVA, Équations aux Dérivées Partielles de type Elliptique, Dunod, Paris, 1968. [MR: 239273] [Zbl: 0164.13001] [Google Scholar]
  12. T. ODEN, Finite Eléments of Nonlinear Continua, McGraw Hill, New York, 1972. [Zbl: 0235.73038] [Google Scholar]
  13. J. E. OSBORH, Regularity of Solutions of the Stokes problem in a polygonal domain, in : Numerical Solution of Partial Differ ential Equations, III Synspade 1975, edited by B. Hubbard, Academic Press, New York, 1976. [MR: 467032] [Zbl: 0344.65049] [Google Scholar]
  14. J. PITKARÄNTA, On a mixed finite element method for the Stokes problem in $R^3$ , RAIRO - Analyse Numérique (à paraître). [Zbl: 0488.76039] [Google Scholar]
  15. G. RAUGEL, Résolution Numérique de Problèmes Elliptiques dans des domaines avec Coins, Thèse de Doctorat de Troisième Cycle, Université de Rennes, 1978. [Google Scholar]
  16. V. RUAS, A class of asymmetrie finite element methods for solving finite incompressible elasticity problems, Comp. Meths. in Appl. Mechs. and Engin., 27, 1981,pp. 319-343. [MR: 632279] [Zbl: 0467.73098] [Google Scholar]
  17. V. RUAS, Une méthode d'éléments finis non conformes en vitesse pour le problème de Stokes tridimensionnel, Matematica Aplicada e Computacional, V. 1, 1, pp. 53.74, 1982. [MR: 667618] [Zbl: 0489.76049] [Google Scholar]
  18. V. RUAS, Méthodes d'Éléments Finis en Élasticité Incompressible Non Linéaire et Diverses Contributions à l'Approximation des Problèmes aux Limites, Thèse de Doctorat d'État ès Sciences, Université Pierre et Marie Curie, Paris, janvier 1982. [Google Scholar]
  19. G. STRANG and J. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  20. R. TEMAM, Navier-Stokes Equations, North Holland, Amsterdam, 1977. [MR: 603444] [Zbl: 0383.35057] [Google Scholar]
  21. J. M. THOMAS, Sur l'Analyse Numérique de Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse de Doctorat d'État ès Sciences, Université Pierre et Marie Curie, Paris, 1977. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you