Free Access
Issue
ESAIM: M2AN
Volume 19, Number 3, 1985
Page(s) 443 - 460
DOI https://doi.org/10.1051/m2an/1985190304431
Published online 31 January 2017
  1. 1. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problem arising from Lagrangien multipliers. R.A.I.R.O., Anal. Numér. 2 (1974), pp. 129-151 [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  2. 2. G. CHAVENT, G. COHEN, M. DUPUY, J JAFFRE, I. RIBERA, Simulation of two dimensional water flooding using mixed finite elements, SPEJ. 24 (1984), pp. 382-390. [Google Scholar]
  3. 3. J. DOUGLAS Jr., R. E. EWING, M. F. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér. 17 (1983), pp. 17-33. [EuDML: 193407] [MR: 695450] [Zbl: 0516.76094] [Google Scholar]
  4. 4. J. DOUGLAS Jr., J. E. ROBERTS, Numerical methods for a model for compressible miscible displacement in porous media, Math. Comp. 41 (1983), pp. 441-459. [MR: 717695] [Zbl: 0537.76062] [Google Scholar]
  5. 5. R. E. EWING, M. F. WHEELER, Galerkin methods for miscible displacement problem in porous media, SIAM J. Numér. Anal. 17 (1980), pp. 351-365. [MR: 581482] [Zbl: 0458.76092] [Google Scholar]
  6. 6. M. FORTIN, Résolution numérique des équations de Navier Stokes par des éléments finis du type mixte, Rapport INRIA n° 184, INRIA Le Chesnay (1976). [Google Scholar]
  7. 7. J JAFFRE, Éléments finis mixtes et décentrage pour les équations de diffusion-convection, Calcolo 23 (1984), pp. 171-197. [MR: 799619] [Zbl: 0562.65077] [Google Scholar]
  8. 8. P. JOLY, La méthode des éléments finis mixtes appliquée au problème de diffusion-convection, Thèse de 3e cycle, Université Pierre-et-Marie Curie, Paris (1982). [Google Scholar]
  9. 9. C. JOHNSON, V. THOMÉE, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O., Anal. Numér., 15 (1981), pp. 41-78. [EuDML: 193370] [MR: 610597] [Zbl: 0476.65074] [Google Scholar]
  10. 10. P LESAINT, P. A. RAVIART, On a finite element method for solving the neutron transport equation. Mathematical Aspect of Finite Elements in Partial Differential Equations, Ed. Carl de Boor, Academic Press (1974), pp. 89-123. [MR: 658142] [Zbl: 0341.65076] [Google Scholar]
  11. 11. P. A. RAVIART, J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Eds. I. Galligani and E. Magenes, Lecture Notes in Mathematics 606, Springer Verlag (1977), pp. 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  12. 12. T. F. RUSSELL, Finite elements with characteristics for two-component incompressible miscible displacement, 6th SPE Symposium on Reservoir Simulation, New Orléans, SPE 10500 (1982). [Google Scholar]
  13. 13. M. F. WHEELER, B. L. DARLOW, Interior penalty Galerkin methods for miscible displacement problems in porous media, Computational Methods in Nonlinear Mechanics, Ed. J. T. Oden, North Holland (1980). [MR: 576923] [Zbl: 0444.76081] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you