Free Access
Issue
ESAIM: M2AN
Volume 19, Number 3, 1985
Page(s) 461 - 475
DOI https://doi.org/10.1051/m2an/1985190304611
Published online 31 January 2017
  1. 1. I. BABUSKA, The theory of small changes in the domain of existence in the theory of partial differential equations and its applications. In : Differential Equations and their Applications. Academic Press, New York, 1963. [EuDML: 220809] [MR: 170133] [Zbl: 0156.10301] [Google Scholar]
  2. 2. J. BEMELMANS, Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung. Analysis 1, 241-282 (1981). [MR: 727877] [Zbl: 0561.76042] [Google Scholar]
  3. 3. J. BEMELMANS, Liquid drops in viscous fluid under the influence of gravity and surface tension. Manuscripta Math. 36, 105-123 (1981). [EuDML: 154810] [MR: 637857] [Zbl: 0478.76118] [Google Scholar]
  4. 4. M. BERCOVIER, O. PIRONNEAU, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211-224 (1979). [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058] [Google Scholar]
  5. 5. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8 (R-2), 129-151 (1974). [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  6. 6. Ph. G. CIARLET, The finite element method for elliptic problems. North Holland, New York, 1980. [MR: 608971] [Zbl: 0511.65078] [Google Scholar]
  7. 7. V. GIRAULT, P.-A. RAVIART, Finite element approximation of the Navier-Stokes equations. Springer, Berlin, 1979. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  8. 8. P. LETALLEC, A mixed finite element approximation of the Navier-Stokes equations. Numer. Math. 35, 381-404 (1980). [EuDML: 186298] [MR: 593835] [Zbl: 0503.76033] [Google Scholar]
  9. 9. V.A. SOLONNIKOV, V. E. SCADlLOV, On a boundary value problem for a siationary system of Navier-Stokes equations. Proc. Steklov. Inst. Math. 125, 186-199 (1973). [Zbl: 0313.35063] [Google Scholar]
  10. 10. R. VERFÜRTH, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO 18, 175-182 (1984). [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you