Free Access
Volume 22, Number 2, 1988
Page(s) 251 - 288
Published online 31 January 2017
  1. L. ARMIJO (1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16/1,1-3. [MR: 191071] [Zbl: 0202.46105] [Google Scholar]
  2. J BLUM, J. Ch. GILBERT, B. THOORIS (1985). Parametric identification of the plasma current density from the magnetic measurements and the pressure profile, code IDENTC Report of JET contract number JT3/9008. [Google Scholar]
  3. J. F. BONNANS, D. GABAY (1984. Une éxtension de la programmation quadratique successive. Lecture Notes in Control and Information Sciences 63, 16-31. A. Bensoussan, J. L Lions (eds). Springer-Verlag. [MR: 876712] [Zbl: 0559.90081] [Google Scholar]
  4. C. G. BROYDEN (1969). A new double-rank minimization algorithm. Notices of the American Mathematical Society 16, 670. [Google Scholar]
  5. C G. BROYDEN, J. E. DENNIS, J. J. MORE (1973). On the local and superlinear convergence of quasi-Newton methods. Journal of the Institute of Mathematics and its Applications 12, 223-245 [MR: 341853] [Zbl: 0282.65041] [Google Scholar]
  6. R. H. BYRD (1985). An example of irregular convergence in some constrained optimization methods that use the projected hessian. Mathematical Programming 32, 232-237. [MR: 793692] [Zbl: 0576.90079] [Google Scholar]
  7. R. H. BYRD, R. B. SCHNABEL (1986). Continuity of the null space basis and constrained optimization. Mathematical Programming 35, 32-41. [MR: 842632] [Zbl: 0598.90072] [Google Scholar]
  8. T F COLEMAN, A. R. CONN (1982 a). Nonlinear programming via an exact penalty function: asymptotic analysis. Mathematical Programming 24, 123-136. [MR: 674627] [Zbl: 0501.90078] [Google Scholar]
  9. T. F. COLEMAN, A. R. CONN (1982 b). Nonlinear programming via an exact penalty function: global analysis. Mathematical Programming 24, 137-161. [MR: 674628] [Zbl: 0501.90077] [Google Scholar]
  10. T. F. COLEMAN, A. R. CONN (1984. On the local convergence of a quasi-Newton method for the nonlinear programming problem. SIAM Journal on Numerical Analysis 21/4, 755-769. [MR: 749369] [Zbl: 0566.65046] [Google Scholar]
  11. J. E. DENNIS, J. J. MORE (1974) A characterization of superlinear convergence and its application to quasi-Newton methods Mathematics of Computation 28/126, 549-560. [MR: 343581] [Zbl: 0282.65042] [Google Scholar]
  12. J. E. DENNIS, J. J. MORE (1977). Quasi-Newton methods, motivation and theory. SIAM Review 19, 46-89. [MR: 445812] [Zbl: 0356.65041] [Google Scholar]
  13. R. FLETCHER (1970). A new approach to variable metric algorithms. Journal 13/3, 317-322. [Zbl: 0207.17402] [Google Scholar]
  14. R. FLETCHER (1981). Practical Methods of Optimization Vol. 2 : Constrained Optimization. John Wiley & Sons. [MR: 633058] [Zbl: 0474.65043] [Google Scholar]
  15. D. GABAY (1982a). Minimizing a differentiable function over a differential manifold. Journal of Optimization Theory and Applications 37/2, 177-219. [MR: 663521] [Zbl: 0458.90060] [Google Scholar]
  16. D. GABAY (1982b). Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization. Mathematical Programming Study 16,18-44. [MR: 650627] [Zbl: 0477.90065] [Google Scholar]
  17. R. P. GE, M. J. D. POWELL (1983). The convergence of variable metric matrices in unconstrained optimization Mathematical Programming 27, 123-143. [MR: 718055] [Zbl: 0532.49015] [Google Scholar]
  18. J. Ch. GILBERT (1986a). Une méthode à métrique variable réduite en optimisation avec contraintes d'égalité non linéaires Rapport de recherche de l'INRIA RR-482, 78153 Le Chesnay Cedex, France. [Google Scholar]
  19. J. Ch. GILBERT (1986b). On the local and global convergence of a reduced quasi-Newton method Rapport de recherche de l'INRIA RR-565, 78153 Le Chesnay Cedex, France (version révisée dans IIASA Workmg Paper WP-87-113). [Zbl: 0676.90061] [Google Scholar]
  20. J. Ch. GILBERT (1986b). Une méthode de quasi-Newton réduite en optimisation sous contraintes avec priorité à la restauration. Lecture Notes in Control and Information Sciences 83, 40-53. A. Bensoussan, J. L. Lions (eds), Sprmger-Verlag. [MR: 870388] [Zbl: 0599.90112] [Google Scholar]
  21. J. Ch. GILBERT (-) (en préparation). [Google Scholar]
  22. D. GOLDFARB (1970). A family of variable metric methods derived by variational means. Mathematics of Computation 24, 23-26. [MR: 258249] [Zbl: 0196.18002] [Google Scholar]
  23. S. P. HAN (1976). Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Mathematical Programming 11, 263-282. [MR: 483440] [Zbl: 0364.90097] [Google Scholar]
  24. S. P. HAN (1977). A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications 22/3, 297-309. [MR: 456497] [Zbl: 0336.90046] [Google Scholar]
  25. D. Q. MAYNE, E. POLAK (1982). A superlinearly convergent algorithm for constrained optimization problems. Mathematical Programming Study 16, 45-61. [MR: 650628] [Zbl: 0477.90071] [Google Scholar]
  26. H. MUKAI, E. POLAK (1978). On the use of approximations in algorithms for optimization problems with equality and inequality constraints. SIAM Journal on Numerical Analysis 15/4, 674-693. [MR: 497967] [Zbl: 0392.49017] [Google Scholar]
  27. J. NOCEDAL, M. L. OVERTON (1985). Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM Journal on Numerical Analysis 22/5, 821-850. [MR: 799115] [Zbl: 0593.65043] [Google Scholar]
  28. M. J. D. POWELL (1971). On the convergence of the variable metric algorithm. Journal of the Institute of Mathematics and its Applications 7, 21-36. [MR: 279977] [Zbl: 0217.52804] [Google Scholar]
  29. M. J. D. POWELL (1976). Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programming, SIAM-AMS Proceedings, Vol. 9, American Mathematical Society, Providence, R.I. [MR: 426428] [Zbl: 0338.65038] [Google Scholar]
  30. M. J. D. POWELL(1978). The convergence of variable metric methods for nonlinearly constrained optimization calculations. Nonlinear Programming 3, 27-63. O. L. Mangasarian, R. R. Meyer, S. M. Robinson (eds), Academic Press, New York. [MR: 507858] [Zbl: 0464.65042] [Google Scholar]
  31. D. F. SHANNO (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation 24, 647-656. [MR: 274029] [Zbl: 0225.65073] [Google Scholar]
  32. R. B. WILSON (1963). A simplicial algorithm for concave programming. Ph. D. Thesis. Graduate School of Business Administration, Havard Univ., Cambridge, MA. [Google Scholar]
  33. Y. YUAN (1985). An only 2-step Q-superlinear convergence example for some algonthms that use reduced Hessian approximations Mathematical Programming 32, 224-231. [MR: 793691] [Zbl: 0565.90060] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you