Free Access
Volume 22, Number 4, 1988
Page(s) 655 - 676
Published online 31 January 2017
  1. O. AXELSSON and V. A. BARKER, Finite Element Solution of Boundary Value Problems, Theory and Computation. Academic Press 1984. [MR: 758437] [Zbl: 0537.65072] [Google Scholar]
  2. P. E. BJØRSTAD, Fast numerical solution of the biharmonic Dirichlet problem on rectangles, Siam J. Numer. Anal. 20, 59-71 (1983). [MR: 687367] [Zbl: 0561.65077] [Google Scholar]
  3. J. F. BOURGAT, Numerical study of a dual iterative method for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. 9, 203-218 (1976). [MR: 431743] [Zbl: 0335.65052] [Google Scholar]
  4. D. BRAESS and P. PEISKER, On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning, IMA Journal of Numerical Analysis 6, 393-404 (1986). [MR: 968266] [Zbl: 0616.65108] [Google Scholar]
  5. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  6. P. G. CIARLET and R. GLOWINSKI, Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. 5, 277-295 (1975). [MR: 373321] [Zbl: 0305.65068] [Google Scholar]
  7. L. W. EHRLICH, Solving the biharmonic equation as a coupled difference equation, Siam J. Numer. Anal. 8, 278-287 (1971). [MR: 288972] [Zbl: 0215.55702] [Google Scholar]
  8. R. GLOWINSKI and O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the two dimensional Stokes problem, Siam Rev., 167-212 (1979). [MR: 524511] [Zbl: 0427.65073] [Google Scholar]
  9. W. HACKBUSCH, Multi-Grid Methods and Applications, Springer Berlin-Heidelberg-New York, Heidelberg 1985. [Zbl: 0595.65106] [Google Scholar]
  10. J. L. LIONS, E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications I, Springer Berlin-Heidelberg-New York 1972. [Zbl: 0223.35039] [Google Scholar]
  11. P. PEISKER, Zwei numerische Verfahren zur Lösung der biharmonischen Gleichung unter besonderer Berücksichtigung der Mehrgitteridee, Dissertation, Bochum 1985. [Zbl: 0573.65085] [Google Scholar]
  12. J. PITKÄRANTA, Boundary subspaces for the finite element method with Lagrange multipliers, Numer. Math. 33, 273-289 (1979). [EuDML: 132641] [MR: 553590] [Zbl: 0422.65062] [Google Scholar]
  13. R. VERFÜRTH, Error estimates for a mixed finite element approximation of the Stokes equations, R.A.I.R.O. Numerical Analysis 18, 175-182 (1984). [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037] [Google Scholar]
  14. O. B. WIDLUND, Iterative methods for elliptic problems partitioned into substructures and the biharmonic Dirichlet problem, in : Proceedings of the sixth international conference on computing methods in science and engineering held at Versailles, France, December, 12-16, 1983. [Zbl: 0569.65081] [Google Scholar]
  15. H. WERNER and R. SCHABACK, Praktische Mathematik II, Springer Berlin-Heidelberg-New York 1979. [MR: 520918] [Zbl: 0383.65001] [Google Scholar]
  16. G. N. YAKOVLEV, Boundary properties of functions of class $W_p^{(l)}$ on regions with angular points, Doklady Academy of Sciences of U.S.S.R. 140, 73-76 (1961). [MR: 136988] [Zbl: 0112.33204] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you