Free Access
Issue
ESAIM: M2AN
Volume 25, Number 1, 1991
Page(s) 67 - 91
DOI https://doi.org/10.1051/m2an/1991250100671
Published online 31 January 2017
  1. A. K. Aziz ed, The mathematical foundations of the finite-element method withapplications to partial differential equations, Academic Press, NewYork (1972) [MR: 347104] [Zbl: 0259.00014] [Google Scholar]
  2. P. G. ClARLET, The finite-element method for elliptic problems, Studies in Math and Appl, North-Holland, New York (1978) [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  3. P. CLAVIN, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog Energ Comb Sci, 11, pp 1-59 (1985) [Google Scholar]
  4. J. DONEA, Recent advances in computational methods for steady and transient transport problems, Nuclear Eng Design, 80, pp 141-162 (1984) [Google Scholar]
  5. M. GHILANI, Simulation numérique de flammes planes stationnaires avec chimiecomplexe, Thesis, Université Paris-Sud (1987) [Google Scholar]
  6. D. F. GRIFFITHS & J. LORENZ, An analysis of the Petrov-Galerkin finite-element method, Comp Meth Appl Mech Eng, 14, pp 39-64 (1978) [MR: 502036] [Zbl: 0384.76065] [Google Scholar]
  7. T. J. R. HUGHES, A simple scheme for developing upwindfïnite éléments, Int. J. Num. Meth. Eng., 12, pp. 1359-1365 (1978). [Zbl: 0393.65044] [Google Scholar]
  8. B. LARROUTUROU, The equations of one-dimensional unsteady flame propagation : existence and uniquenes, SI AM J. Math. Anal., 19 (1), pp. 32-59 (1988). [MR: 924543] [Zbl: 0662.35090] [Google Scholar]
  9. B. LARROUTUROU, Introduction to combustion modelling, Springer Series in Computational Physics, to appear. [Google Scholar]
  10. N. PETERS & J. WARNATZ eds, Numerical methods in laminar flame propagation, Notes in Numerical Fluid Mechanics, 6, Vieweg, Braunschweig (1982). [MR: 736841] [Zbl: 0536.00017] [Google Scholar]
  11. R. D. RJCHTMYER & K. W. MORTON, Difference methods for initial value problems, Wiley, New York (1967). [Zbl: 0155.47502] [Google Scholar]
  12. M. SERMANGE, Mathematical and numerical aspects of one-dimensional laminar flame simulation, Appl. Math. Opt., 14 (2), pp. 131-154 (1986). [MR: 863336] [Zbl: 0654.65085] [Google Scholar]
  13. M. D. SMOOKE, Solution of burner stabilized premixed laminar flames by boundary values methods, J. Comp. Phys., 48, pp. 72-105 (1982). [Zbl: 0492.65065] [Google Scholar]
  14. M. D. SMOOKE, J. A. MILLER & R. J. KEE, Determination of adiabatic flames speeds by boundary value methods, Comb. Sci. Tech., 34, pp. 79-90 (1983). [Google Scholar]
  15. R. F. WARMING & F. HYETT, The modified equation approach to the stabilityand accuracy analysis of finite-difference methods, J. Comp. Phys., 14 (2), p.159 (1974). [MR: 339526] [Zbl: 0291.65023] [Google Scholar]
  16. F. A. WILLIAMS, Combustion theory, second édition, Benjamin Cummings, Menlo Park (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you