Free Access
Volume 26, Number 1, 1992
Topics in computer aided geometric design
Page(s) 23 - 36
Published online 31 January 2017
  1. G. CHANG and P. DAVIS, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40, (1984), 11-28. [MR: 728296] [Zbl: 0528.41005] [Google Scholar]
  2. G. CHANG and Y. FENG, A new proof for the convexity of the Bernstein - Bézier surfaces over triangles, Chinese Ann. Math, Ser., B6 (2), (1985), 172-176. [MR: 841865] [Zbl: 0575.41010] [Google Scholar]
  3. G. CHANG and J. HOSCHEK, Convergence of Bézier triangular nets and a theorem by Pólya, J. Approx. Theory, Vol. 58, N°. 3, (1989), 247-258. [MR: 1012674] [Zbl: 0724.41005] [Google Scholar]
  4. W. BOEHM, G. FARIN and J. KAHMANN, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1, (1984), 1-60. [Zbl: 0604.65005] [Google Scholar]
  5. W. DAHMEN and C. A. MICCHELLI, Subdivision algoritmus for the génération of box simple surfaces, Compt. Aided Geom. Desing 1, (1984), 115-129. [MR: 1230249] [Zbl: 0581.65011] [Google Scholar]
  6. W. DAHMEN and C. A. MICCHELLI, Convexity of multivariate Bernstein polynomials and box spline surfaces, Studia Sci. Math. Hungar. 23, (1988), 265-287. [MR: 962457] [Zbl: 0689.41013] [Google Scholar]
  7. G. FARIN, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, Vol. 3, Number 2, (1986), 83-127. [MR: 867116] [Google Scholar]
  8. T. N. T. GOODMAN, Convexity of Bézier nets on triangulations, to appear in Comput. Aided Geom. Design. [MR: 1107853] [Zbl: 0731.41009] [Google Scholar]
  9. T. A. GRANDINE, On convexity of piecewise polynomial functions on triangulations, Comput. Aided Geom. Design 6, (1989), 181-187. [MR: 1019422] [Zbl: 0675.41029] [Google Scholar]
  10. J. A. GREGORY and J. ZHOU, Convexity of Bézier nets on sub-triangles, Technical Report 04/90, Brunel University, Dept. of Math. and Statistics, March (1990). [MR: 1122914] [Zbl: 0756.41026] [Google Scholar]
  11. S. L. LEE and G. M. PHILLIPS, Convexity of Bernstein Polynomials on the standard triangle, preprint. [Google Scholar]
  12. C. A. MICCHELLI, H. PRAUTZSCH, Computing surfaces invariant under subdivision, Comput. Aided Geom. Design 4, (1987), 321-328. [MR: 937370] [Zbl: 0646.65013] [Google Scholar]
  13. H. PRAUTZSCH, Unterteilungsalgorithmen für multivariate Splines - Ein geometrischer Zugang, Diss., TU Braunschweig (1983/84). [Zbl: 0647.41015] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you