Free Access
Volume 26, Number 1, 1992
Topics in computer aided geometric design
Page(s) 77 - 93
Published online 31 January 2017
  1. M. DO CARMO, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. [MR: 394451] [Zbl: 0326.53001] [Google Scholar]
  2. G. FARIN, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, 1988. [MR: 974109] [Zbl: 0694.68004] [Google Scholar]
  3. T. A. FOLEY, Interpolation with Internal and Point Tension Controls Using Cubic Weighted v-splines, ACM Trans. Math. Software 13 (1987), pp. 68-96. [MR: 896535] [Zbl: 0626.65008] [Google Scholar]
  4. T. A. FOLEY and G. M. NIELSON, Knot Selection for Parametric Spline Interpolation, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche and L. L. Schumaker, Academic Press, 1989, pp. 261-271. [MR: 1022713] [Zbl: 0677.41013] [Google Scholar]
  5. R. FRANKE, Recent Advances in the Approximation of Surfaces from Scattered Data, in Topics in Multivanate Approximation, eds., C. K. Chui, L. L. Schumaker, and F. I. Utreras, Academic Press, Boston, 1987. [MR: 924824] [Zbl: 0629.41021] [Google Scholar]
  6. J. W. JEROME, and S. D. FISHER, Minimum Norm Extremals in Function Spaces with Applications to Classical and Modern Analysis, Lecture Notes in Math. 479, Springer-Verlag, Berlin, 1975. [MR: 442780] [Zbl: 0307.41027] [Google Scholar]
  7. S. KARLIN, Total Positivity, Vol. 1, Stanford University Press, Stanford, 1968. [MR: 230102] [Zbl: 0219.47030] [Google Scholar]
  8. S. KARLIN, Interpolation Properties of Generalized Perfect Splines and the Solutions of Certain Extremal Problems I, Trans. Amer. Math. Soc., 206 (1975), pp. 25-66. [MR: 367512] [Zbl: 0303.41011] [Google Scholar]
  9. L. D. LANDAU, and E. M. LIFSHITZ, Theory of Elasticity, Pergamon Press, New York, 1959. [MR: 106584] [Google Scholar]
  10. E. H. LEE, and G. E. FORSYTHE, Variational Study of Nonlinear Spline Curves, SIAM Rev. 15 (1973), pp. 120-133. [MR: 331716] [Google Scholar]
  11. S. MARIN, An Approach to Data Parametrization in Parametric Cubic Spline Interpolation Problems, J. Approx. Theory 41 (1984), pp. 64-86. [MR: 742237] [Zbl: 0558.41006] [Google Scholar]
  12. C. A. MICCHELLI and F. I. UTRERAS, Smoothing and Interpolation in a Convex Set of Hilbert Space, SIAM. J. Sci. Stat. Comp. 9 (1988), pp. 728-746. [MR: 945935] [Zbl: 0651.65046] [Google Scholar]
  13. G. M. NIELSON, Some Piecewise Polynomial Alternatives to Spline Under Tension, in Computer Aided Geometric Design, eds., R. E. Barnhill, and R. F. Riesenfeld, Academic Press (1974), pp. 209-235. [MR: 371012] [Google Scholar]
  14. K. SCHERER, Best Interpolation with Free Nodes by Closed Curves, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche, and L. L. Schumaker, Academic Press, 1989, pp. 549-559. [MR: 1022734] [Zbl: 0675.41008] [Google Scholar]
  15. G. S. SIDHU, and H. L. WEINERT, Vector-valued Lg-splines, J. Math. Anal., Appl. 70 (1979), pp. 505-529. [MR: 543591] [Zbl: 0435.65007] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you