Free Access
Volume 26, Number 1, 1992
Topics in computer aided geometric design
Page(s) 95 - 112
Published online 31 January 2017
  1. E. L. ALLGOWER and S. GNUTZMANN (1987), An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. [MR: 881376] [Zbl: 0618.65006] [Google Scholar]
  2. B. BUCHBERGER (1985), Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. [MR: 835951] [Zbl: 0587.13009] [Google Scholar]
  3. B. BUCHBERGER, G. COLLINS and B. KUTZLER (1988), Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. [MR: 1001203] [Google Scholar]
  4. A. CAYLEY (1848), On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120. [Google Scholar]
  5. E.-W. Chionh (1990), Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada. [Google Scholar]
  6. V. CHANDRU, D. DUTTA C. HOFFMANN (1990), Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58. [Google Scholar]
  7. J. CHOU, E. COHEN (1989), Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah. [Google Scholar]
  8. JUNG-HONG CHUANG (1990), Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University. [Google Scholar]
  9. J.-H. CHUANG and C. M. HOFFMANN (1989), On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. [Zbl: 0746.68091] [Google Scholar]
  10. S. COQUILLART (1987), Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. [Zbl: 0655.65021] [Google Scholar]
  11. D. DUTTA and C. M. HOFFMANN (1990), A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ. [Google Scholar]
  12. R. FAROUKI (1986), The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. [Zbl: 0621.65003] [Google Scholar]
  13. R. FAROUKI and C. NEFF (1989), Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. [MR: 1074602] [Google Scholar]
  14. C. M. HOFFMANN (1989), Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal. [Google Scholar]
  15. C. M. HOFFMANN (1990), A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. [MR: 1079400] [Zbl: 0712.65010] [Google Scholar]
  16. C. M. HOFFMANN (1990), Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. [MR: 1064970] [Zbl: 0705.68102] [Google Scholar]
  17. C. M. HOFFMANN and M. J. O'DONNELL (1982), Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. [Zbl: 0481.68008] [Google Scholar]
  18. J. HOSCHEK (1985), Offset curves in the plane, Comput. Aided Design 17, 11-82. [Google Scholar]
  19. J. HOSCHEK (1988), Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. [MR: 945304] [Zbl: 0647.65007] [Google Scholar]
  20. J. LI, J. HOSCHEK, E. HARTMANN (1990), A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. [MR: 1074610] [Google Scholar]
  21. B. O'NEILL (1966), Elementary Differential Geometry, Academic Press. [MR: 203595] [Zbl: 0971.53500] [Google Scholar]
  22. B. PHAM (1988), Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. [Zbl: 0656.65010] [Google Scholar]
  23. J. PEGNA (1988), Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg. [Google Scholar]
  24. J. PEGNA and F.-E. WOLTER (1989), A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada. [Google Scholar]
  25. J. ROSSIGNAC, A. REQUICHA (1986), Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. [Zbl: 0631.65144] [Google Scholar]
  26. S.E.O. SAEED, A. DE PENNINGTON, J. R. DODSWORTH (1988), Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. [Zbl: 0656.65015] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you