Free Access
Volume 26, Number 1, 1992
Topics in computer aided geometric design
Page(s) 113 - 135
Published online 31 January 2017
  1. P. M. ANSELONE and P. J. LAURENT, A General Method for the Construction of Interpolating Spline Functions, Numer. Math. 12 (1968), 66-82. [EuDML: 131850] [MR: 249904] [Zbl: 0197.13501] [Google Scholar]
  2. R. E. BARNHILL, Representation and Approximation of Surfaces, in Mathematical Software III, J. R. Rice, éd., Academic Press, New York, 1977, 68-119. [MR: 489081] [Zbl: 0407.68030] [Google Scholar]
  3. H. CHIYOKURA and F. KIMURA, A New Surface Interpolation Method for Irregular Curve Models, Comput. Graph. Forum 3 (1984), 789-813. [Google Scholar]
  4. S. A. COONS, Surfaces for Computer Aided Design of Space Forms, MIT-Report MAC-TR-41, 1961. [Google Scholar]
  5. D. D. COX, Multivariate Smoothing Spline Functions, SIAM J. Numer. Anal. 21, N° 4 (1984), 789-813. [MR: 749371] [Zbl: 0581.65012] [Google Scholar]
  6. P. DIERCKX, An Algorithm for Surface Fitting with Spline Functions, IMA J. Numer. Anal. 1 (1981), 267-283. [MR: 641310] [Zbl: 0469.65006] [Google Scholar]
  7. P. DIERCKX, A Fast Algorithm for Smoothing Data on a Rectangular Grid while Using Spline Functions, SIAM J. Numer. Anal 19 (1982), 1286-1304. [MR: 679667] [Zbl: 0493.65003] [Google Scholar]
  8. Q. DING and B. J. DAVIES, Surface Engineering Geometry for Computer-Aided Design and Manufacture, Ellis Horwood Ltd., Chichester, U. K., 1987. [MR: 930448] [Google Scholar]
  9. N. DYN and G. WAHBA, On the Estimation of Functions of Several Random Variables from Aggregated Data, SIAM J. Anal. 13, N°1 (1982), 134-152. [MR: 641546] [Zbl: 0488.65079] [Google Scholar]
  10. G. FARIN, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 1990. [MR: 1058011] [Zbl: 0702.68004] [Google Scholar]
  11. F. R GANTMACHER, The Theory of Matrices, Vol. 1, Chelsea Publ. Comp., New York, 1977. [MR: 1657129] [Zbl: 0927.15001] [Google Scholar]
  12. R. G. GOULT, The Smoothing of Parametric Curves and Surfaces, in Papers of the Fourth Joint Anglo-Hungarian Seminar on Computer Aided Design, G. Renner, M. J. Pratt, eds., published jointly by Computer and Automation Institute, Hungarian Academy of Sciences, and Dept. Appl. Computing and Mathematics, Cranfield Institute of Technology, Budapest, 1985. [Google Scholar]
  13. J. HAHN, Filling Polygonal Holes with Rectangular Patches, in Theory and Practice of Geometric Modelling, W. Strasser, H. P. Seidel, eds., Springer Verlag, Heidelberg, 1989. [MR: 1042325] [Zbl: 0692.68074] [Google Scholar]
  14. J. G. HAYES and J. HALLIDAY, The Least-Squares Fitting of Cubic Spline Surfaces to General Data Sets, J. Inst. Math. Appl. 14 (1974), 89-103. [MR: 378353] [Zbl: 0284.65005] [Google Scholar]
  15. M. HOSAKA, Theory of Curve and Surface Synthesis and their Smooth Fitting, Inform. Process. Japan 9 (1969), 60-68. [MR: 264831] [Zbl: 0276.68042] [Google Scholar]
  16. J. HOSCHEK and D. LASSER, Grundlagen der Geometrischen Datenverarbeitung, Teubner, Stuttgart, 1989. [MR: 1055828] [Zbl: 0682.68002] [Google Scholar]
  17. C. L. HU and L. L. SCHUMAKER, Bivariate Natural Spline Smoothing, in Approximation and Application, G. Meinardus and G. Nurnberger, eds., Birkhauser, Basel, 1985, 165-179. [MR: 899096] [Zbl: 0561.41011] [Google Scholar]
  18. C. L. HU and L. L. SCHUMAKER, Complete Spline Smoothing, Numer. Math. 49 (1986), 1-10. [EuDML: 133095] [MR: 847014] [Zbl: 0633.65015] [Google Scholar]
  19. A. D. IOFFE and V. M. TIHOMIROV, Theory of Extremal Problems, in Stud. Math. Appl. 6, North Holland Publishing Company, Amsterdam, 1979. [MR: 528295] [Zbl: 0407.90051] [Google Scholar]
  20. B. JOHANSSON, Unpublished Notes and Correspondence, 1989. [Google Scholar]
  21. A.K. JONES, Non-rectangular Surface Patches with Curvature Continuity, Comput. Aided Design 6 (1988). [Zbl: 0699.65010] [Google Scholar]
  22. J. KAHMANN, Continuity of Curvature between Adjacent Bézier Patches, in Surfaces in CAGD, North Holland Publ. Comp., Amsterdam, 1983. [MR: 709289] [Google Scholar]
  23. N. KAKISHITA, An Approach to Splining Curves and Surfaces, 1970 (unpublished). [Google Scholar]
  24. P. D. KAKLIS, Fairing of 3D Noisy Measurements in the Context of a Curve Mesh, Sonderforschungsbereich 203, Teilprojekt A2, Institut für Schiffs und Meerestechnik, Technische Universität Berlin, Berlin, November 1989. [Google Scholar]
  25. A. KUFNER O. JOHN and S. FUCIK, Function Spaces, Noordhoff Internat. Publ., Leyden, 1977. [MR: 482102] [Zbl: 0364.46022] [Google Scholar]
  26. C. KUO, Computer Methods for Ship Surface Design, Longman Group Ltd, London, 1971. [Google Scholar]
  27. P. LANKASTER and M. TISMENETSKY, The Theory of Matrices with Applications, Academic Press, New York, 1985. [MR: 792300] [Zbl: 0558.15001] [Google Scholar]
  28. D. LIU and J. HOSCHEK, GC1 Continuity Conditions between Adjacent Rectangular and Triangular Bézier Surface Patches, Comput. Aided Geom. Design 6 (1989). [Zbl: 0673.65006] [Google Scholar]
  29. G. M. NIELSON, Bivariate Spline Functions and the Approximation of Linear Functionals, Numer. Math.21 (1973), 138-160. [EuDML: 132220] [MR: 338644] [Zbl: 0251.41004] [Google Scholar]
  30. G. M. NIELSON, Multivariate Smoothing and Interpolating Splines, SIAM J. Numer. Anal. 11, N° 2 (1974), 435-446. [MR: 361543] [Zbl: 0286.65003] [Google Scholar]
  31. H. NOWACKI, Liu DINGYUAN and LU XINMIN, Mesh Fairing GCl Surface Generation Method, in Theory and Practice of Geometric Modelling, W. Strasser, H. P. Seidel, eds., Springer Verlag, Heidelberg, 1989, 93-108. [Zbl: 0692.68077] [Google Scholar]
  32. H. NOWACKI and D. REESE, Design and Fairing of Ship Surfaces, in Surfaces in CAGD, North Holland Publishing Company, Amsterdam, 1983. [Google Scholar]
  33. C. H. REINSCH, Smoothing by Spline Functions, Numer. Math. 10 (1967), 177-183. [EuDML: 131782] [MR: 295532] [Zbl: 0161.36203] [Google Scholar]
  34. C. H. REINSCH, Smoothing by Spline Functions II, Numer. Math. 16 (1971), 451-454. [EuDML: 132051] [Zbl: 1248.65020] [MR: 1553981] [Google Scholar]
  35. T. REUDING, Bézier Patches on Cubic Grid Curves. An Application to the Preliminary Design of a Yacht Hull Surface, Comput. Aided Geom. Design 6 (1989). [Google Scholar]
  36. R. F. SARRAGA, G1 Interpolation of Generally Unrestricted Cubic Bézier Curves, Comput. Aided Geom. Design 4 (1987). [MR: 898021] [Zbl: 0621.65002] [Google Scholar]
  37. R. F. SARRAGA, Computer Modelling of Surfaces with Arbitrary Shapes, IEEE Comp. Graph. Appl. 10, N° 2 (1990). [Google Scholar]
  38. L. SCHUMAKER, Fitting Surfaces to Scattered Data, in Approximation Theory II, G. G. Lorentz, C. K. Chui and L. Schumaker, eds., Academic Press, New York, 1976. [MR: 426369] [Zbl: 0343.41003] [Google Scholar]
  39. I. SINGER, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer Verlag, Heidelberg, 1970. [MR: 270044] [Zbl: 0197.38601] [Google Scholar]
  40. B. SU and D. LIU, Computational Geometry, Academic Press and Shanghai Scientifîc and Technical Papers, New York, 1989. [MR: 1019561] [Zbl: 0679.68206] [Google Scholar]
  41. O. TAUSSKY, Bounds for Characteristic Roots of Matrices, Duke Math. J. 15 (1948) 1043-1044. [MR: 28810] [Zbl: 0031.24405] [Google Scholar]
  42. F. I. UTRERAS, Cross-Validation Techniques for Smoothing Spline Functions in One and Two Dimensions, in Smoothing Techniques in Curve Estimation, M. Rosenblatt, Th. Gasser, eds., Lecture Notes in Math. 757, Springer Verlag, Heidelberg, 1979, 196-232. [MR: 564260] [Zbl: 0447.65005] [Google Scholar]
  43. F. I. UTRERAS, On Generalized Cross-Validation for Multivariate Smoothing Spline Functions, SIAM J. Sci. Statist. Comput. 8, N° 4 (1987), 630-643. [MR: 892310] [Zbl: 0622.65008] [Google Scholar]
  44. V. V. VOYEVODIN, Linear Algebra, MIR Publishers, Moscow, 1983. [MR: 722137] [Zbl: 0523.15001] [Google Scholar]
  45. G. WAHBA, Convergence Rates of « Thin Plate » Smoothing Splines when the Data are Noisy, in Smoothing Techniques in Curve Estimation, M. Rosenblatt, Th. Gasser, eds., Lecture Notes in Math. 757, Springer Verlag, Heidelberg, 1979, 233-245. [MR: 564261] [Zbl: 0449.65003] [Google Scholar]
  46. G. WAHBA and J. WENDELBERGER, Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross-Validation, Mon. Weather Rev. 108 (1980), 36-57. [Google Scholar]
  47. G. WAHBA, Bayesian « Confidence Intervals » for the Cross-Validated Smoothing Spline, J. Roy. Statist. Soc., Ser. B 45, N° 1 (1983), 133-150. [MR: 701084] [Zbl: 0538.65006] [Google Scholar]
  48. J. WEBER, Methods for Constructing Curvature Continuous Free Form Surfaces, in German, Dissertation, TU Berlin, 1990. [Google Scholar]
  49. G. WAHBA, Surface Fitting with Scattered Noisy Data on Euclidean D-Space and on the Sphere, Rocky Mountain, J. Math. 14, 1 (1984), 281-299. [MR: 736179] [Zbl: 0565.65002] [Google Scholar]
  50. W. H. WONG, On Constrained Multivariate Splines and Their Approximations, Numer. Math. 43 (1984), 141-152. [EuDML: 132893] [MR: 726367] [Zbl: 0553.41028] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you