Free Access
Issue
ESAIM: M2AN
Volume 26, Number 6, 1992
Page(s) 739 - 756
DOI https://doi.org/10.1051/m2an/1992260607391
Published online 31 January 2017
  1. I. BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  2. I. BABUŠKA, On the Schwarz algorithm in the theory of differential equations of mathematical physics, Tchecosl. Math. J., 8 (1958), 328-342 (in Russian). [EuDML: 11937] [Zbl: 0083.11301] [Google Scholar]
  3. J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK and A. H. SCHATZ, A preconditioning technique for the efficient solution of problems with local grid refinement, Compt. Meth. Appl. Mech. Eng., 67 (1988), 149-159. [Zbl: 0619.76113] [Google Scholar]
  4. J. H. BRAMBLE, J. E. PASCIAK, J. WANG and J. XU, Convergence estimates for product iterative methods with applications to domain decomposition and multigrid, Math. Comp. (to appear). [MR: 1090464] [Zbl: 0754.65085] [Google Scholar]
  5. J. H. BRAMBLE, J. E. PASCIAK, J. WANG and J. XU, Convergence estimate for multigrid algorithms without regularity assumptions, Math. Comp. (to appear). [MR: 1079008] [Zbl: 0727.65101] [Google Scholar]
  6. F. BREZZI, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., Modél. Math. Anal. Numér., 2 (1974), 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  7. F. BREZZI, J. Jr. DOUGLAS, R. DURÁN and L. D. MARINI, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987), 237-250. [EuDML: 133194] [MR: 890035] [Zbl: 0631.65107] [Google Scholar]
  8. F. BREZZI, J. Jr. DOUGLAS, R. FORTIN and L. D. MARINI, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O., Modél. Math. Anal. Numér., 21 (1987), 581-604. [EuDML: 193515] [MR: 921828] [Zbl: 0689.65065] [Google Scholar]
  9. F. BREZZI, J. Jr. DOUGLAS and L. D. MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235. [EuDML: 133032] [MR: 799685] [Zbl: 0599.65072] [Google Scholar]
  10. J. Jr. DOUGLAS and J.E. ROBERTS, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 45 (1985), 39-52. [MR: 771029] [Zbl: 0624.65109] [Google Scholar]
  11. J. Jr. DOUGLAS and J. WANG, Superconvergence of mixed finite element methods on rectangular domains, Calcolo, 26 (1989), 121-134. [MR: 1083049] [Zbl: 0714.65084] [Google Scholar]
  12. J. Jr. DOUGLAS and J. WANG, A new family of mixed finite element spaces over rectangles, submitted. [MR: 1288240] [Zbl: 0806.65109] [Google Scholar]
  13. R. E. EWING and J. WANG, Analysis of mixed finite element methods on locally-refined grids, submitted. [Zbl: 0772.65071] [Google Scholar]
  14. R. E. EWING and J. WANG, Analysis of multilevel decomposition iterative methods for mixed finite element methods, submitted to R.A.I.R.O., Modél. Math. Anal. Numér. [EuDML: 193744] [Zbl: 0823.65035] [Google Scholar]
  15. P. G. CIARLET, « The Finite Element Method for Elliptic Problems », North-Holland, New York, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  16. M. DRYJA and O. WIDLUND, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report, Courant Institute of Mathematical Sciences, 339 (1987). [Google Scholar]
  17. M. DRYJA and O. WIDLUND, Some domain decomposition algorithms for elliptic problems, Technical Report, Courant Institute of Mathematical Sciences, 438 (1989). [Zbl: 0719.65084] [MR: 1038100] [Google Scholar]
  18. R. FALK and J. OSBORN, Error estimates for mixed methods, R.A.I.R.O.,Modél. Math. Anal. Numér., 14 (1980), 249-277. [EuDML: 193361] [MR: 592753] [Zbl: 0467.65062] [Google Scholar]
  19. M. FORTIN, An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Modél. Math. Anal. Numér, 11 (1977), 341-354. [EuDML: 193306] [MR: 464543] [Zbl: 0373.65055] [Google Scholar]
  20. R. GLOWINSKI and M. F. WHEELER, Domain decomposition and mixed finite element methods for elliptic problems, In the Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (eds.), 1988. [MR: 972509] [Zbl: 0661.65105] [Google Scholar]
  21. P. L. LIONS, On the Schwarz alternating method, In the Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (eds.), 1988. [MR: 972510] [Zbl: 0658.65090] [Google Scholar]
  22. T. P. MATHEW, « Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems», Ph. D. Thesis, New York University, 1989. [Google Scholar]
  23. A. M. MATSOKIN and S. V. NEPOMNYASCHIKH, A Schwarz alternating method in a subspace, Soviet Math., 29(10) (1985), 78-84. [Zbl: 0611.35017] [Google Scholar]
  24. P.-A. RAVIART and J.-M. THOMAS, A mixed finite element method for 2nd order elliptic problems, In Mathematical Aspects of Finite Element Methods, Lecture Notes in Math. (606), Springer-Verlag, Berlin and New York, 1977, 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  25. H. A. SCHWARZ, Über einige Abbildungsaufgaben, Ges. Math. Abh., 11(1869), 65-83. [Google Scholar]
  26. J. WANG, Convergence analysis without regularity assumptions for multigrid algorithme based on SOR smoothing, SIAM J. Numer. Anal, (to appear). [MR: 1173181] [Zbl: 0753.65093] [Google Scholar]
  27. J. WANG, Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods I : self adjoint and positive definite elliptic problems, SIAM J. Numer. Anal, (submitted) and in the « Proceeding of International Conference on Iterative Methods in Linear Algebra », Belgium, 1991. [MR: 1159720] [Zbl: 0785.65115] [Google Scholar]
  28. J. WANG, Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods II : non-self adjoint and indefinite elliptic problems, SIAM J. Numer. Anal, (submitted). [Zbl: 0777.65066] [Google Scholar]
  29. J. WANG, Asymptotic expansions and L∞-error estimates for mixed finite element methods for second order elliptic problems, Numer. Math., 55 (1989), 401-430. [EuDML: 133361] [MR: 997230] [Zbl: 0676.65109] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you