Free Access
Volume 30, Number 2, 1996
Page(s) 237 - 263
Published online 31 January 2017
  1. D. N. ARNOLD and F. BREZZI, 1985, Mixed and nonconforming finite element methods : implementation, post-processing and error estimates, Math. Modelling Numer. Anal., 19, pp.7-35. [EuDML: 193443] [MR: 813687] [Zbl: 0567.65078] [Google Scholar]
  2. R. E. BANK, 1990, PLTMG - A software package for solving elliptic partial differential equations, User's Guide 6.0., SIAM, Philadelphia. [MR: 1052151] [Zbl: 0717.68001] [Google Scholar]
  3. R. E. BANK, A. H. SHERMAN and A. WEISER, 1983, Refinement algorithm and data structures for regular local mesh refinement, Scientific Computing, R. Stepleman et al. (eds.), Amsterdam, IMACS North-Holland, pp. 3-17. [MR: 751598] [Google Scholar]
  4. R. E. BANK and A. WEISER, 1985, Some posteriori error estimators for elliptic partial differential equations. Math. Comp., 44, pp. 283-301. [MR: 777265] [Zbl: 0569.65079] [Google Scholar]
  5. F. BORNEMANN, 1991, A sharpened condition number estimate for the BPX preconditioner of elliptic finite element problems on highly nonuniform triangulations, Konrad-Zese-Zentruman Berlin, Prepint SC 91-9. [Google Scholar]
  6. J. H. BRAMBLE, J. E. PASCIAK, J. XU, 1990, Parallel multilevel preconditioners. Math. Comp., 55, pp. 1-22. [MR: 1023042] [Zbl: 0703.65076] [Google Scholar]
  7. F. BREZZI and M. FORTIN, 1991, Mixed and hybrid finite element methods, Springer, Berlin-Heidelberg-New York. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  8. P. G. CLARLET, 1978, The finite element method for elliptic problems, North-Holland, Amsterdam. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  9. P. DEUFLHARD, P. LEINEN and H. YSERENTANT, 1989, Concepts of an adaptive hierarchical finite element code, IMPACT comut. Sci. Engrg., 1, pp. 3-35. [Zbl: 0706.65111] [Google Scholar]
  10. P. OSWALD, 1991, On a BPX-preconditioner for PI elements, Prepint, FSU Jena. [Zbl: 0787.65018] [Google Scholar]
  11. B. SZABÓ and I. BABU KA, 1991, Finite element analysis, John Wiley & Sons, New York. [Google Scholar]
  12. B. WOHLMUTH and R. H. W. HOPPE, 1994, Multilevel approaches to nonconforming finite element discretizations of linear second order elliptic boundary value problems, to appear in Journal of Computation and Information, 4, pp. 73-86. [Google Scholar]
  13. J. XU, 1989, Theory of multilevel methods, Department of Mathematics Pennstate, Report No. AM 48. [Google Scholar]
  14. H. YSERENTANT, 1990, Two preconditioners based on the multilevel splitting of finite element spaces, Numer. Math, 58, pp. 163-184. [EuDML: 133494] [MR: 1069277] [Zbl: 0708.65103] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you