Free Access
Volume 30, Number 4, 1996
Page(s) 385 - 400
Published online 31 January 2017
  1. D. N. ARNOLD, F. BREZZI, Mixed and nonconforming finite element method simplementation, postprocessing and error estimates, R.A.I.R.O., Modél. Math. Anal Numer. 19, 1985, pp. 7-32. [EuDML: 193443] [MR: 813687] [Zbl: 0567.65078] [Google Scholar]
  2. D. N. ARNOLD, R. S. FALK, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1989, pp. 1276-1290. [MR: 1025088] [Zbl: 0696.73040] [Google Scholar]
  3. I. BABUŠKA, R. DURÁN, R. RODRÍGUEZ, Analysis of the efficiency of an a posteriori error estimator for liner triangular finite elements, Siam J. Numer. Anal. 29, 1992, pp. 947-964. [MR: 1173179] [Zbl: 0759.65069] [Google Scholar]
  4. I. BABUŠKA, A. MILLER, A feedback finite element method with a posteriori error estimation. Part I : The finite element method and some basic properties of the a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61, 1987, pp. 1-40. [MR: 880421] [Zbl: 0593.65064] [Google Scholar]
  5. I. BABUŠKA, W. C. RHEINBOLDT, A posteriori error estimators in the finite element method, Inter. J. Numer. Meth. Eng. 12, 1978, pp. 1587-1615. [Zbl: 0396.65068] [Google Scholar]
  6. R. E. BANK, A. WEISER, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 1985, pp. 283-301. [MR: 777265] [Zbl: 0569.65079] [Google Scholar]
  7. P. G. CIARLET, The finite element method for elliptic problems, North Holland, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  8. D. F. GRIFFITHS, A. R. MITCHELL, Nonconforming elements, The mathematical basis of finite element methods, D. F. Griffiths, ed., Clarendon Press, Oxford, 1984, pp. 41-69. [MR: 807009] [Google Scholar]
  9. L. D. MARINI, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22, 1985, pp. 493-496. [MR: 787572] [Zbl: 0573.65082] [Google Scholar]
  10. M. C. RIVARA, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21, 1984, pp.604-613 [MR: 744176] [Zbl: 0574.65133] [Google Scholar]
  11. L. R. SCOTT, S. SHANG, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54, 1990, pp. 483-493. [MR: 1011446] [Zbl: 0696.65007] [Google Scholar]
  12. R. VERFÜRTH, A posteriori error estimators for the Stokes equations, Numer.Math. 55, 1989, pp. 309-325. [EuDML: 133357] [MR: 993474] [Zbl: 0674.65092] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you