Free Access
Volume 30, Number 4, 1996
Page(s) 401 - 411
Published online 31 January 2017
  1. I. BABUŠKA, 1973, The finite element method with Lagrangian multiplies, Numer. Math., 20, pp. 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108]
  2. J. BARANGER and D. SANDRI, 1992, A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow, M2AN, 26, pp. 331-345. [EuDML: 193666] [MR: 1153005] [Zbl: 0738.76002]
  3. F. BREZZI, 1974, On the existence, uniquence and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., R-2, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  4. F. BREZZI, 1986, A survey of mixed finite element methods, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 34-49. [MR: 964479] [Zbl: 0665.73058]
  5. F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. [MR: 1115205] [Zbl: 0788.73002]
  6. F. BREZZI and J. PITKÄRANTA, 1984, On the stabilization of finite element approximations of the Stokes equations, in : Efficient Solutions of Elliptic Systems, Notes on Numer. Fluid Mech., 10 (ed. Hackbush), Vieweg, Wiesbaden, pp. 11-19. [MR: 804083] [Zbl: 0552.76002]
  7. P. G. CIARLET, 1976, The Finite Element Methods for Elliptic Problems, North-Holland. [MR: 520174] [Zbl: 0999.65129]
  8. P. G. CIARLET and J. L. LIONS, 1991, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), North-Holland, Amsterdam. [MR: 1115235] [Zbl: 0712.65091]
  9. M. FORTIN and R. PIERRE, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comp. Meth. Appl. Mech. Engrg., 73, pp. 341-350. [MR: 1016647] [Zbl: 0692.76002]
  10. L. P. FRANCA, 1989, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, pp. 259-273. [MR: 1030385] [Zbl: 0688.73044]
  11. L. P. FRANCA and T. J. R. HUGHES, 1988, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, pp. 89-129. [MR: 953593] [Zbl: 0629.73053]
  12. L. P. FRANCA and R. STENBERG, 1991, Error analysis of some Galerkin-least-sequares methods for the elasticity equations, SIAM J. Num. Anal., 78, pp. 1680-1697. [MR: 1135761] [Zbl: 0759.73055]
  13. V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag. [MR: 851383] [Zbl: 0585.65077]
  14. R. GLOWINSKI and O. PIRONNEAU, 1979, On a mixed finite element approximation of the Stokes problem I, Convergence of the approximate solution, Numer. Math., 33, pp. 397-424. [EuDML: 132651] [MR: 553350] [Zbl: 0423.65059]
  15. M. D. GUNZBURGER, 1986, Mathematical aspects of finite element methods for incompressible viscous flows, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 124-150. [MR: 964483] [Zbl: 0668.76029]
  16. M. D. GUNZBURGER, 1989, Finite Element Methods for Incompressible Viscous Flows : A Guide to Theory, Pratice and Algorithms, Academic, Boston. [MR: 1017032]
  17. J. LI and A. ZHOU, 1992, Notes on « On mixed mesh finite elements for solving the stationary Stokes problem », Numer. Anal. J. Chinese Univ., 14, 3, pp. 287-289 (Chinese). [MR: 1260630]
  18. Q. LIN, J. LI and A. ZHOU, 1991, A rectangle test for the Stokes equations, in : Proc. of Sys. Sci. & Sys. Eng., Great Wall (Hongkong), Culture Publish Co., pp. 240-241.
  19. Q. LIN, N. YAN and A. ZHOU, 1991, A rectangle test for interpolated finite elements, ibid., pp. 217-229.
  20. Q. LIN and Q. ZHU, 1994, The Proeprocessing and Postprocessing for the Finite Element Method, Shangai Scientific & Technical Publishers (Chinese).
  21. R. STENBERG, 1984, Analysis of mixed finite element method for the Stokes problem : a unified approach, Math. Comp., 42, pp. 9-23. [MR: 725982] [Zbl: 0535.76037]
  22. R. STENBERG, 1991, Postprocess schemes for some mixed finite elements, RAIRO Model. Math. Anal. Numer., 25, pp. 152-168. [EuDML: 193618] [MR: 1086845] [Zbl: 0717.65081]
  23. R. TEMAN, 1979, Navier-Stokes Equations, North-Holland, Amsterdam. [Zbl: 0426.35003]
  24. R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the stockes equations, RAIRO Numer. Anal., 18, pp. 175-182. [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037]
  25. A. ZHOU and J. LI, 1994, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68, pp. 427-435. [MR: 1313153] [Zbl: 0823.65110]
  26. A. ZHOU, J. LI and N. YAN, 1992, On the full approximation accuracy in finite element methods, in : Proc. Symposium on Applied Math. for Young Chinese Scholars (ed. F. Wu), Inst. of Applied Math., Academia Sinica, Beijing, July, pp. 544-553.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you