Free Access
Volume 30, Number 4, 1996
Page(s) 401 - 411
Published online 31 January 2017
  1. I. BABUŠKA, 1973, The finite element method with Lagrangian multiplies, Numer. Math., 20, pp. 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  2. J. BARANGER and D. SANDRI, 1992, A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow, M2AN, 26, pp. 331-345. [EuDML: 193666] [MR: 1153005] [Zbl: 0738.76002] [Google Scholar]
  3. F. BREZZI, 1974, On the existence, uniquence and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., R-2, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  4. F. BREZZI, 1986, A survey of mixed finite element methods, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 34-49. [MR: 964479] [Zbl: 0665.73058] [Google Scholar]
  5. F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  6. F. BREZZI and J. PITKÄRANTA, 1984, On the stabilization of finite element approximations of the Stokes equations, in : Efficient Solutions of Elliptic Systems, Notes on Numer. Fluid Mech., 10 (ed. Hackbush), Vieweg, Wiesbaden, pp. 11-19. [MR: 804083] [Zbl: 0552.76002] [Google Scholar]
  7. P. G. CIARLET, 1976, The Finite Element Methods for Elliptic Problems, North-Holland. [MR: 520174] [Zbl: 0999.65129] [Google Scholar]
  8. P. G. CIARLET and J. L. LIONS, 1991, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), North-Holland, Amsterdam. [MR: 1115235] [Zbl: 0712.65091] [Google Scholar]
  9. M. FORTIN and R. PIERRE, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comp. Meth. Appl. Mech. Engrg., 73, pp. 341-350. [MR: 1016647] [Zbl: 0692.76002] [Google Scholar]
  10. L. P. FRANCA, 1989, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, pp. 259-273. [MR: 1030385] [Zbl: 0688.73044] [Google Scholar]
  11. L. P. FRANCA and T. J. R. HUGHES, 1988, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, pp. 89-129. [MR: 953593] [Zbl: 0629.73053] [Google Scholar]
  12. L. P. FRANCA and R. STENBERG, 1991, Error analysis of some Galerkin-least-sequares methods for the elasticity equations, SIAM J. Num. Anal., 78, pp. 1680-1697. [MR: 1135761] [Zbl: 0759.73055] [Google Scholar]
  13. V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  14. R. GLOWINSKI and O. PIRONNEAU, 1979, On a mixed finite element approximation of the Stokes problem I, Convergence of the approximate solution, Numer. Math., 33, pp. 397-424. [EuDML: 132651] [MR: 553350] [Zbl: 0423.65059] [Google Scholar]
  15. M. D. GUNZBURGER, 1986, Mathematical aspects of finite element methods for incompressible viscous flows, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 124-150. [MR: 964483] [Zbl: 0668.76029] [Google Scholar]
  16. M. D. GUNZBURGER, 1989, Finite Element Methods for Incompressible Viscous Flows : A Guide to Theory, Pratice and Algorithms, Academic, Boston. [MR: 1017032] [Google Scholar]
  17. J. LI and A. ZHOU, 1992, Notes on « On mixed mesh finite elements for solving the stationary Stokes problem », Numer. Anal. J. Chinese Univ., 14, 3, pp. 287-289 (Chinese). [MR: 1260630] [Google Scholar]
  18. Q. LIN, J. LI and A. ZHOU, 1991, A rectangle test for the Stokes equations, in : Proc. of Sys. Sci. & Sys. Eng., Great Wall (Hongkong), Culture Publish Co., pp. 240-241. [Google Scholar]
  19. Q. LIN, N. YAN and A. ZHOU, 1991, A rectangle test for interpolated finite elements, ibid., pp. 217-229. [Google Scholar]
  20. Q. LIN and Q. ZHU, 1994, The Proeprocessing and Postprocessing for the Finite Element Method, Shangai Scientific & Technical Publishers (Chinese). [Google Scholar]
  21. R. STENBERG, 1984, Analysis of mixed finite element method for the Stokes problem : a unified approach, Math. Comp., 42, pp. 9-23. [MR: 725982] [Zbl: 0535.76037] [Google Scholar]
  22. R. STENBERG, 1991, Postprocess schemes for some mixed finite elements, RAIRO Model. Math. Anal. Numer., 25, pp. 152-168. [EuDML: 193618] [MR: 1086845] [Zbl: 0717.65081] [Google Scholar]
  23. R. TEMAN, 1979, Navier-Stokes Equations, North-Holland, Amsterdam. [Zbl: 0426.35003] [Google Scholar]
  24. R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the stockes equations, RAIRO Numer. Anal., 18, pp. 175-182. [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037] [Google Scholar]
  25. A. ZHOU and J. LI, 1994, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68, pp. 427-435. [MR: 1313153] [Zbl: 0823.65110] [Google Scholar]
  26. A. ZHOU, J. LI and N. YAN, 1992, On the full approximation accuracy in finite element methods, in : Proc. Symposium on Applied Math. for Young Chinese Scholars (ed. F. Wu), Inst. of Applied Math., Academia Sinica, Beijing, July, pp. 544-553. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you