Free Access
Issue
ESAIM: M2AN
Volume 31, Number 2, 1997
Page(s) 251 - 287
DOI https://doi.org/10.1051/m2an/1997310202511
Published online 31 January 2017
  1. G. D. AKRIVIS, V. A. DOUGALIS and O. A. KARAKASHIAN, 1991, On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, Numer. Math., 59, pp. 31-53. [EuDML: 133538] [MR: 1103752] [Zbl: 0739.65096] [Google Scholar]
  2. R. ALEXANDER, 1991, The modified Newton method in the solution of stiff ordinary differential equations, Math. Comp., 57, pp. 673-701. [MR: 1094939] [Zbl: 0734.65060] [Google Scholar]
  3. G. A. BAKER, V. A. DOUGALIS and O. A. KARAKASHIAN, 1983, Convergence of Galerkin approximations for the Korteweg-de Vries equation, Math. Comp., 40, pp. 419-433. [MR: 689464] [Zbl: 0519.65073] [Google Scholar]
  4. J. L. BONA, V. A. DOUGALIS, O. A. KARAKASHIAN and W. R. McKlNNEY, 1995, Conservative high order numerical methods for the generalized Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London Ser. A, 351, pp. 107-164. [MR: 1336983] [Zbl: 0824.65095] [Google Scholar]
  5. J. L. BONA and R. SMITH, 1975, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 298, pp. 555-604. [MR: 385355] [Zbl: 0306.35027] [Google Scholar]
  6. J. C. BUTCHER, 1987, The numerical analysis of ordinary differerential equations. Runge-Kutta and general linear methods, John Wiley & Sons. [MR: 878564] [Zbl: 0616.65072] [Google Scholar]
  7. M. CROUZEIX, W. H. HUNDSDORFER and M. N. SPIJKER, 1983, On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods, BIT, 23, pp. 84-91. [MR: 689606] [Zbl: 0506.65030] [Google Scholar]
  8. V. A. DOUGALIS and O. A. KARAKASHIAN, 1985, On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp., 45, pp. 329-345. [MR: 804927] [Zbl: 0609.65064] [Google Scholar]
  9. E. HAIRER and G. WANNER, 1991, Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer series in Computational Mathematics, Springer Verlag. [MR: 1111480] [Zbl: 0729.65051] [Google Scholar]
  10. O. KARAKASHIAN and W. RUST, 1988, On the parallel implementation of implicit Runge-Kuta methods, SIAM J. Sci. Sta. Comput., 9, pp. 1085-1090. [MR: 963856] [Zbl: 0664.65068] [Google Scholar]
  11. O. KARAKASHIAN, G. D. AKRIVIS and V. A. DOUGALIS, 1993, On optimal-order error estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30, pp. 377-400. [MR: 1211396] [Zbl: 0774.65091] [Google Scholar]
  12. O. KARAKASHIAN and W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. [MR: 1035935] [Zbl: 0725.65107] [Google Scholar]
  13. J. M. SANZ-SERNA and D. F. GRIFFITHS, 1991, A new class of results for the algebraic equations of implicit Runge-Kutta processes, IMA Journal of Numerical Analysis, 11, pp. 449-455. [MR: 1135198] [Zbl: 0738.65067] [Google Scholar]
  14. V. THOMÉE and B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11, pp. 1059-1068. [MR: 371088] [Zbl: 0292.65052] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you