Free Access
Volume 31, Number 4, 1997
Page(s) 471 - 493
Published online 31 January 2017
  1. C. BERNARDI and Y. MADAY, 1992, Approximations Spectrales de Problèmes aux Limites Elliptiques, vol. 10 of Mathématiques & Applications, Springer Verlag France, Paris. [MR: 1208043] [Zbl: 0773.47032] [Google Scholar]
  2. J. H. BRAMBLE and J. Xu, 1991, Some estimates for a weighted L2 projection, Math. Comp., 56, pp. 463-476. [MR: 1066830] [Zbl: 0722.65057] [Google Scholar]
  3. C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag. [MR: 917480] [Zbl: 0658.76001] [Google Scholar]
  4. M. CASARIN, 1995, Quasi-optimal Schwarz methods for the conforming spectral element discretization, in 1995 Copper Mountain Conference on Multignd Methods, N. D. Melson, T. A. Manteuffel and S. F. McCormick, eds., NASA, 1995. [Zbl: 0889.65123] [Google Scholar]
  5. T. F. CHAN and T. P. MATHEW, 1994, Domain decomposition algorithms, Acta Numerica, Cambridge University Press, pp. 61-143. [MR: 1288096] [Zbl: 0809.65112] [Google Scholar]
  6. M. DRYJA, B. F. SMITH and O. B. WIDLUND, 1994, Schwarz analysis of itérative substructunng algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31, pp. 1662-1694. [MR: 1302680] [Zbl: 0818.65114] [Google Scholar]
  7. M. DRYJA and O. B. WIDLUND, 1990, Towards a unified theory of domain décomposition algorithms for elliptic problems, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. Chan, R. Glowinski, J. Pénaux and O. Widlund, eds., SIAM, Philadelphia, PA, pp. 3-21. [MR: 1064335] [Zbl: 0719.65084] [Google Scholar]
  8. M. DRYJA and O. B. WlDLUND, 1995, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48, pp. 121-155. [MR: 1319698] [Zbl: 0824.65106] [Google Scholar]
  9. P. F. FISCHER and E. M. RØNQUIST, 1994, Spectral element methods for large scale parallel Navier-Stokes calculations, Comp. Meth. Appl. Mech. Engr., 116, pp. 69-76. [MR: 1286514] [Zbl: 0826.76060] [Google Scholar]
  10. P. LE TALLEC, 1994, Domain decomposition methods in computational mechanics, in Computational Mechanics Advances, J. T. Oden, ed., vol 1 (2), North-Holland, pp. 121-220. [MR: 1263805] [Zbl: 0802.73079] [Google Scholar]
  11. P. LE TALLEC, Y.-H. DE ROECK and M. VIDRASCU, 1991, Domain-decomposition methods for large linearly elliptic three dimensional problems, J. of Computational and Applied Mathematics, 35. [Zbl: 0719.65083] [Google Scholar]
  12. J. MANDEL, Balancing domain decomposition, 1993, Comm. Numer. Meth. Engrg., 9, pp. 233-241. [MR: 1208381] [Zbl: 0796.65126] [Google Scholar]
  13. J. MANDEL and M. BREZINA, 1993, Balancing domain decomposition : Theory and computations in two and three dimensions, tech. rep., Computational Mathematics Group, University of Colorado at Denver, UCD/CCM TR 2. [Google Scholar]
  14. S. S. PAHL, Schwarz type domain decomposition methods for spectral element discretizations, Master's thesis, Department of Computational and Applied Mathematics, University of Wittwatersrand, Johannesburg, South Africa, December 1993. [Google Scholar]
  15. L. F. PAVARINO and O. B. WlDLUND, 1997, Iterative substructuring methods for spectral elements : Problems in three dimensions based on numerical quadrature. Computers & Mathematics with Applications, 33, pp. 193-209. [MR: 1442072] [Zbl: 0871.41020] [Google Scholar]
  16. L. F. PAVARINO and O. B. WlDLUND, 1996, A polylogarithmic bound for an itérative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal., 33, pp. 1303-1335. [MR: 1403547] [Zbl: 0856.41007] [Google Scholar]
  17. L. F. PAVARINO and O. B. WlDLUND, 1995, Preconditioned conjugate gradient solvers for spectral elements in 3D, in Solution Techniques for Large Scale CFD Problems, W. Habashi, ed., John Wiley & Sons, pp. 249-270. [Google Scholar]
  18. E. M. RØNQUIST, 1992, A domain decomposition method for elliptic boundary value problems : Application to unsteady incompressible fluid flow, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, D. E. Keyes, G. A. Meurant, J. S. Scroggs and R. G. Voigt, eds., Philadelphia, PA, SIAM. [MR: 1189558] [Zbl: 0767.76056] [Google Scholar]
  19. E. M. RØNQUIST, 1995, A domain decomposition solver for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. To appear. [Google Scholar]
  20. B. F. SMTTH, P. E. BJØRSTAD and W. D. GROPP, 1996, Domain Decomposition : Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press. [MR: 1410757] [Zbl: 0857.65126] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you