Free Access
Issue
ESAIM: M2AN
Volume 31, Number 4, 1997
Page(s) 495 - 516
DOI https://doi.org/10.1051/m2an/1997310404951
Published online 31 January 2017
  1. R. A. ADAMS, 1975, Sobolev Spaces. Academic Press. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. S. ALVAREZ, 1986, Problemas de Frontera Libre en Teoría de Lubrificatión.Thesis, University Complutense of Madrid, Spain. [Google Scholar]
  3. S. BALASUNDARAM and P. K. BHATTACHARYYA, 1982, A mixed finite element method for the Dirichlet problem of fourth order elliptic operators with variable coefficients. In : Finite Element Methods in Flow Problems (Ed. T. Kawai) Tokyo Univ. Press. [Zbl: 0508.76006] [Google Scholar]
  4. G. BAYADA, M. CHAMBAT, 1984, Existence and uniqueness for a lubrication problem with nonregular conditions on the free boundary. Boll. UMI. 6, 3B, 543-557. [MR: 762718] [Zbl: 0612.35026] [Google Scholar]
  5. G. BAYADA, M. CHAMBAT, 1986, The transition between the Stokes equation and the Reynolds equation : a mathematical proof. Appl. Math. Opt., 14, 73-93. [MR: 826853] [Zbl: 0701.76039] [Google Scholar]
  6. [6] G. BAYADA, M. CHAMBAT, 1986, Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. of Theor. and Appl. Mech., 5, 703-729. [MR: 878123] [Zbl: 0621.76030] [Google Scholar]
  7. G. BAYADA, J. DURANY, C. VAZQUEZ, 1995, Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Meth. in the Appl. Sc., 18, 255-266. [MR: 1319998] [Zbl: 0820.35110] [Google Scholar]
  8. G. BAYADA, M. EL ALAOUI, C. VÁZQUEZ, 1996, Existence of solution for elastohydrodynamic piezoviscous lubrication problems with a new model of cavitation. Eur. J. of Appl. Math., 7, 63-73. [MR: 1381799] [Zbl: 0856.76013] [Google Scholar]
  9. A. BERMÚDEZ, J. DURANY, 1989, Numerical solution of cavitation problems in lubrication. Comp. Meth. in Appl. Mech. and Eng., 75, 457-466. [MR: 1035758] [Zbl: 0687.76030] [Google Scholar]
  10. A. BERMÚDEZ, C. MORENO, 1981, Duality methods for solving variational inequalities. Comp. Math, with Appl., 7, 43-58. [MR: 593554] [Zbl: 0456.65036] [Google Scholar]
  11. A. CAMERON, 1981, Basic Lubrication Theory. Ellis Horwood. [Google Scholar]
  12. M. CHIPOT, 1984, Variational Inequalities and Flow on Porous Media. Appl. Math. Sc. Series 52. Springer-Verlag. [MR: 747637] [Zbl: 0544.76095] [Google Scholar]
  13. P. CIARLET, 1978, The Finite Element Method for Elliptic Problems. North-Holland. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  14. P. CIARLET, P. A. RAVIART, 1974, A mixed finite element method for the biharmonic equation. In : Mathematical Aspects of Finite Elements in Partial Differential Equations. (Ed. C. de Boor), Academic Press, 125-145. [MR: 657977] [Zbl: 0337.65058] [Google Scholar]
  15. G. CIMATTI, 1983, How the Reynolds equation is related to the Stokes equation. Appl. Math. Opt., 10, 223-248. [MR: 722490] [Zbl: 0538.76038] [Google Scholar]
  16. G. CIMATTI, 1986, Existence and uniqueness for nonlinear Reynolds equations.Int. J. Eng. Sc. 24, N.5, 827-834. [MR: 841923] [Zbl: 0624.76090] [Google Scholar]
  17. D. DOWSON, C. M. TAYLOR, 1979, Cavitation in bearings. Ann. Rev. Fluid Mech.,35-66. [Google Scholar]
  18. J. DURANY, G. GARCIA, C. VAZQUEZ, 1996, A mixed Dirichlet-Neumann problem for a nonlinear Reynolds equation in elastohydrodynamic piezoviscous lubncation. Proc. of the Edinb. Math Soc., 39, 151-162. [MR: 1375675] [Zbl: 0857.35044] [Google Scholar]
  19. J. DURANY, G GARCÍA, C. VÁZQUEZ, 1996, Numerical computation of free boundary problems in elastohydrodynamic lubrication Appl. Math. Mod, 20, 104-113. [Zbl: 0851.73058] [Google Scholar]
  20. J. DURANY, C. VAZQUEZ, 1994, Mathematical analysis of an elastohydrodynamic lubrication problem with cavitation Appl. Anal. Vol. 53, N. 1, 135-142. [MR: 1379190] [Zbl: 0841.35133] [Google Scholar]
  21. V. GlRAULT, P. A. RAVIART, 1979, Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, 749, Springer. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  22. R. GLOWINSKI, O. PIRONNEAU, 1979, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem SIAM Review, 21, 167-212. [MR: 524511] [Zbl: 0427.65073] [Google Scholar]
  23. D. KINDERLEHRER, G. STAMPACCHIA, 1980, An Introduction to Variational Inequalities and their Applications Academic Press. [MR: 567696] [Zbl: 0457.35001] [Google Scholar]
  24. O. REYNOLDS, 1986, On the theory of lubrication and its applications to M. Beauchamp Tower's experiments Phil. Trans. Roy. Soc. London, A117, 157-234. [JFM: 18.0946.04] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you