Free Access
Volume 32, Number 3, 1998
Page(s) 307 - 339
Published online 27 January 2017
  1. M. ABRAHAMOWITZ & I. A. STEGUN Handbook of mathematematical functions. Dover Publications, INC, New York. [Google Scholar]
  2. V. V. ARISTOV & F. G. CHEREMISIN, 1980, The conservative splitting method for solving Boltzmann's equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 1, p. 208-225. [MR: 564789] [Zbl: 0458.76061] [Google Scholar]
  3. A. A. ARSENEV & O. E. BURYAK, 1991, On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. U.S.S.R. Sbornik, Vol. 69, No. 2, p. 465-478. [MR: 1055522] [Zbl: 0724.35090] [Google Scholar]
  4. A. A. ARSENEV & N. V. PESKOV, 1978, On the existence of a generalized solution of Landau's equation. U.S.S.R. Comput. Maths. Math. Phys., Vol. 17, p. 241-246. [MR: 470442] [Zbl: 0383.35064] [Google Scholar]
  5. Yu. A. BEREZIN, M. S. PEKKER & V. N. KUDICK, 1987, Conservative Finite-Difference Schemes for the Fokker-Planck Equation Not Violating the Low of an Increasing Entropy. Jour. of comp. phys., Vol. 69, p. 163-174. [MR: 892257] [Zbl: 0644.76091] [Google Scholar]
  6. R. L. BERGER, J. R. ALBRITTON, C. J. RANDALL, E. A. WILLIAMS, W. L. KRUER, A. B. LANGDON & C. J. HANNA, 1990, Stopping and thermahzation of interpenetrating plasma streams. Phys. Fluids B, Vol. 3, No. 1. [Google Scholar]
  7. A. V. BOBYLEV, 1981, Expansion of the Boltzmann collision integral in a Laudau series. Sov. Phys. Dolk., Vol. 20, No. 11, p. 740-742. [Google Scholar]
  8. A. V. BOBYLEV, I. F. POTAPENKO & V. A. CHUYANOV, Kinetic equations of the Landau type as a model of the Boltzmann equation and completely conservative difference schemes. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 4, p. 190-201. [MR: 585294] [Zbl: 0493.76078] [Google Scholar]
  9. D. DECK & G. SAMBA, 1994, Le code Procions. Note CEA No. N 2780, CEA/CEL-V, F-94195 Villeneuve St. Georges Cedex. [Google Scholar]
  10. L. DESVILLETTES, 1992, On asymptotics of the Boltzmann equation when the collisions become grazing. Trans. Th. and Stat. Phys., Vol. 21, No. 3, p. 259-276. [MR: 1165528] [Zbl: 0769.76059] [Google Scholar]
  11. P. DEGOND & B. LUCQUIN-DESREUX, 1992, The Fokker-Plank assymptotics of the Boltzmann operator in the Coulomb case. Math. Mod. and Meth. in Appl. Sc., Vol. 2, No. 2, p. 167-182. [MR: 1167768] [Zbl: 0755.35091] [Google Scholar]
  12. P. DEGOND & B. LUCQUIN-DESREUX, 1994, An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math., Vol. 68, p. 239-262. [MR: 1283340] [Zbl: 0806.65133] [Google Scholar]
  13. I. S. GRADSHTEYN & I. M. RYZHIK, Table of integrals, series and products. Academic press. [MR: 1773820] [Zbl: 0918.65002] [Google Scholar]
  14. N. A. KRALL & A. W. TRIVELPIECE, 1973, Principles of plasma physics. Mc Graw Hill book company. [Google Scholar]
  15. S. JORNA & L. WOOD, 1987, Fokker-Planck calculations on relaxation of anisotropic velocity distributions in plasmas. Phys. rev. A, Vol. 36, No. 1. [Google Scholar]
  16. O. LARROCHE, 1993, Kinetic simulation of a plasma collision experiment. Phys. Fluids B, Vol. 5, No. 8. [Google Scholar]
  17. M. LEMOU, C. BUET, S. CORDIER & P. DEGOND, A numerical, conservative and entropic scheme for the Fokker-Planck equation. In preparation. [Zbl: 0880.65112] [Google Scholar]
  18. B. LUCQUIN-DESREUX, 1992, Discrétisation de l'opérateur de Fokker-Planck dans le cas homogène. C. R. Acad. Sci., Paris, t. 314, p. 407-411. [MR: 1153725] [Zbl: 0749.35034] [Google Scholar]
  19. W. M. MAC DONALD, M. N. ROSENBLUTH & W. CHUCK, 1957, Relaxation of a system of particles with Coulomb interactions. Phys. Rev., Vol. 107, No. 2. [MR: 87304] [Zbl: 0085.44701] [Google Scholar]
  20. M. S. PEKKER & V. N. KUDICK, 1984, Conservative Difference Schemes for the Fokker-Planck Equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 24, No. 3, p. 206-210. [MR: 750108] [Google Scholar]
  21. I. F. POTAPENKO & V. A. CHUYANOV, 1979, A completely conservative difference scheme for the two-dimensional Landau equation. U.S.R.R. Comput. Math. Math. Phys., Vol. 20, No. 2, p. 249-253. [MR: 572407] [Google Scholar]
  22. J. C. WITNEY, 1970, Finite Difference Methods for the Fokker-Planck Equation. J. Comp. Phys., Vol. 6, p. 483-509. [MR: 273833] [Zbl: 0203.48501] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you