Free Access
Issue |
ESAIM: M2AN
Volume 32, Number 7, 1998
|
|
---|---|---|
Page(s) | 817 - 842 | |
DOI | https://doi.org/10.1051/m2an/1998320708171 | |
Published online | 30 January 2017 |
- R. A. ADAMS, Sobolev Spaces. Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
- I. BABUŠKA and W. C. RHEINBOLDT, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736-754 (1978). [MR: 483395] [Zbl: 0398.65069] [Google Scholar]
- I. BABUŠKA and W. C. RHEINBOLDT, A posteriori error estimates for the finite element method. Int. J. Numer. Methods in Engrg. 12, 1597-1615 (1978). [Zbl: 0396.65068] [Google Scholar]
- E. BÄNSCH and K. G. SIEBERT, A posteriori error estimation for nonlinear problems by dual techniques. Preprint, Universität Freiburg, 1995. [Google Scholar]
- C. BERNARDI, B. MÉTIVET and R. VERFÜRTH, Analyse numérique d'indicateurs d'erreur. Preprint R 93025, Université Paris VI, 1993. [Google Scholar]
- P. G. CIARLET, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
- P. CLÉMENT, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77-84 (1975). [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008] [Google Scholar]
- M. DAUGE, Elliptic Boundary Value Problems on Corner Domains. Springer, Lecture Notes in Mathematics 1341, Berlin, 1988. [MR: 961439] [Zbl: 0668.35001] [Google Scholar]
- K. ERIKSSON, An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models and Math. in Appl. Sci. 4, 313-329 (1994). [MR: 1282238] [Zbl: 0806.65106] [Google Scholar]
- K. ERIKSSON and C. JOHNSON, An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361-383 (1988). [MR: 929542] [Zbl: 0644.65080] [Google Scholar]
- K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal. 28, 43-77 (1991). [MR: 1083324] [Zbl: 0732.65093] [Google Scholar]
- K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems IV. Nonlinear problems. Chalmers University of Göteborg, Preprint 1992, 44 (1992). [MR: 1360457] [Zbl: 0835.65116] [Google Scholar]
- V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations. Computational Methods in Physics, Springer, Berlin, 2nd édition, 1986. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
- P. GRISVARD, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
- C. JOHNSON and P. HANSBO, Adaptive finite element methods in computational mechanics. Comp. Math. Appl. Mech. Engrg. 101, 143-181 (1992). [MR: 1195583] [Zbl: 0778.73071] [Google Scholar]
- R. H. NOCHETTO, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1-22 (1995). [MR: 1270622] [Zbl: 0920.65063] [Google Scholar]
- J. POUSIN and J. RAPPAZ, Consistency, stability, a priori, and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213-231 (1994). [MR: 1310318] [Zbl: 0822.65034] [Google Scholar]
- R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. (206), 445-475 (1994). [MR: 1213837] [Zbl: 0799.65112] [Google Scholar]
- R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic problems. Bericht Nr. 180, Ruhr-Universität Bochum, 1995. [Zbl: 0869.65067] [Google Scholar]
- R. VERFÜRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series in advances in numerical mathematics, Stuttgart, 1996. [Zbl: 0853.65108] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.