Free Access
Issue
ESAIM: M2AN
Volume 32, Number 7, 1998
Page(s) 817 - 842
DOI https://doi.org/10.1051/m2an/1998320708171
Published online 30 January 2017
  1. R. A. ADAMS, Sobolev Spaces. Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030]
  2. I. BABUŠKA and W. C. RHEINBOLDT, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736-754 (1978). [MR: 483395] [Zbl: 0398.65069]
  3. I. BABUŠKA and W. C. RHEINBOLDT, A posteriori error estimates for the finite element method. Int. J. Numer. Methods in Engrg. 12, 1597-1615 (1978). [Zbl: 0396.65068]
  4. E. BÄNSCH and K. G. SIEBERT, A posteriori error estimation for nonlinear problems by dual techniques. Preprint, Universität Freiburg, 1995.
  5. C. BERNARDI, B. MÉTIVET and R. VERFÜRTH, Analyse numérique d'indicateurs d'erreur. Preprint R 93025, Université Paris VI, 1993.
  6. P. G. CIARLET, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058]
  7. P. CLÉMENT, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77-84 (1975). [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008]
  8. M. DAUGE, Elliptic Boundary Value Problems on Corner Domains. Springer, Lecture Notes in Mathematics 1341, Berlin, 1988. [MR: 961439] [Zbl: 0668.35001]
  9. K. ERIKSSON, An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models and Math. in Appl. Sci. 4, 313-329 (1994). [MR: 1282238] [Zbl: 0806.65106]
  10. K. ERIKSSON and C. JOHNSON, An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361-383 (1988). [MR: 929542] [Zbl: 0644.65080]
  11. K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal. 28, 43-77 (1991). [MR: 1083324] [Zbl: 0732.65093]
  12. K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems IV. Nonlinear problems. Chalmers University of Göteborg, Preprint 1992, 44 (1992). [MR: 1360457] [Zbl: 0835.65116]
  13. V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations. Computational Methods in Physics, Springer, Berlin, 2nd édition, 1986. [MR: 548867] [Zbl: 0413.65081]
  14. P. GRISVARD, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. [MR: 775683] [Zbl: 0695.35060]
  15. C. JOHNSON and P. HANSBO, Adaptive finite element methods in computational mechanics. Comp. Math. Appl. Mech. Engrg. 101, 143-181 (1992). [MR: 1195583] [Zbl: 0778.73071]
  16. R. H. NOCHETTO, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1-22 (1995). [MR: 1270622] [Zbl: 0920.65063]
  17. J. POUSIN and J. RAPPAZ, Consistency, stability, a priori, and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213-231 (1994). [MR: 1310318] [Zbl: 0822.65034]
  18. R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. (206), 445-475 (1994). [MR: 1213837] [Zbl: 0799.65112]
  19. R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic problems. Bericht Nr. 180, Ruhr-Universität Bochum, 1995. [Zbl: 0869.65067]
  20. R. VERFÜRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series in advances in numerical mathematics, Stuttgart, 1996. [Zbl: 0853.65108]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you