Free Access
Volume 32, Number 7, 1998
Page(s) 859 - 876
Published online 27 January 2017
  1. A. G. ARMSTRONG, A. M. COLLIE, C. J. DISERENS, N. J. NEWMAN, M. SIMKIN and C. W. TROWBRIDGE, New developments in the magnet design program GFUN. Rutherford Laboratory Report RL-5060. [Google Scholar]
  2. Sh. AXLER, P. BOURDON and W. RAMEY, Harmonic function theory. Graduate Texts in Mathematics, 137, Springer-Verlag, New York, 1992. [MR: 1184139] [Zbl: 0765.31001] [Google Scholar]
  3. A. BOSSAVIT, On the condition "H normal to the wall" in magnetic field problems. Écoles CEA-EDF-INRIA: Magnétostatique, pages 9-28, INRIA 1987. [Zbl: 0616.65125] [Google Scholar]
  4. P. G. CIARLET, Plates and junctions in elastic multi-structures. An asymptotic analysis. Masson-Springer Verlag, Paris, 1990. [MR: 1071376] [Zbl: 0706.73046] [Google Scholar]
  5. M. FRIEDMAN, Finite element formulation of the general magnetostatic problem in the space of solenoidal vector functions. Math. of Comp., 43: pp. 415-431, 1984. [MR: 758191] [Zbl: 0561.65093] [Google Scholar]
  6. J. K. HALE and G. RAUGEL, Partial differential equations on thin domains. In Differential equations and mathematical physics. Mathematics in science and engineering, 186, edited by Ch. Bennewitz, Academic Press, Boston, 1992. [MR: 1126691] [Zbl: 0785.35050] [Google Scholar]
  7. H. LE DRET, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications. Masson, Paris, 1991. [MR: 1130395] [Zbl: 0744.73027] [Google Scholar]
  8. J.-L. LIONS, Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, 323, Springer-Verlag, Berlin, 1973. [MR: 600331] [Zbl: 0268.49001] [Google Scholar]
  9. J. PASCIAK, A new scalar potential formulation of the magnetostatic field problem. Math. of Comp., 43: pp. 433-445, 1984. [MR: 758192] [Zbl: 0552.65082] [Google Scholar]
  10. G. RAUGEL and G. SELL, Équations de Navier-Stokes dans des domaines minces en dimension trois : régularité globale. C. R. Acad. Sci. Paris, Série I, Math. 309 : pp. 299-303, 1989. [MR: 1054239] [Zbl: 0715.35063] [Google Scholar]
  11. F. ROGIER, Mathematical and numerical stùdy of a magnetostatic problem around a thin shield. SIAM J. Numer. Anal., 30: pp. 454-477, 1993. [MR: 1211400] [Zbl: 0773.65086] [Google Scholar]
  12. R. TEMAM and M. ZIANE, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions. Advances in Differential Equations, 1: pp. 499-546, 1996. [MR: 1401403] [Zbl: 0864.35083] [Google Scholar]
  13. M. VAINBERG, Variational method and method of monotone operators in the theory of nonlinear operators. John Wiley and Sons, New York, Toronto, 1973. [Google Scholar]
  14. R. DAUTRAY and J.-L. LIONS, Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris, 1985. [Zbl: 0642.35001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you