Free Access
Volume 32, Number 7, 1998
Page(s) 877 - 895
Published online 27 January 2017
  1. Y. A. ALKHUTOV and I. T. MAMEDOV, The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients, Amer. Math. Soc, 59, p. 471-495, 1988. [MR: 881909] [Zbl: 0663.35033] [Google Scholar]
  2. Y. AMIRAT and M. MOUSSAOUI, Analysis of a one-dimensional model for compressible miscible displacement in porous media, SIAM J. Math. Anal. 26-3, p. 659-674, 1995. [MR: 1325908] [Zbl: 0832.35014] [Google Scholar]
  3. Y. AMIRAT, K. HAMDACHE and A. ZIANI, Homogenization of a one-dimensional model for compressible miscible flow in porous media, preprint LMA 94-11, Univ. Blaise Pascal (France), 1994. [Zbl: 0727.76093] [Google Scholar]
  4. Y. AMIRAT, K. HAMDACHE and A. ZIANI, Existence globale de solutions faibles pour un système parabolique-hyperbolique intervenant en dynamique des milieux poreux, C. R. Acad. Sci. Paris, t. 321, Sériel, p. 253-258, 1995. [MR: 1345458] [Zbl: 0838.76086] [Google Scholar]
  5. Y. AMIRAT, K. HAMDACHE and A. ZIANI, Mathematical analysis for compressible miscible displacement models in porous media, Math, Models Meth. in the Appl. Sc., 6 (6), 729-747 (1996). [MR: 1404826] [Zbl: 0859.35087] [Google Scholar]
  6. Y. AMIRAT and Y. J. PENG, Compressible miscible displacement for multi-species mixture in porous media, preprint LMA 96-8, Univ. Blaise Pascal (France), 1996. [Google Scholar]
  7. J. P. AUBIN, Un théorème de compacité, C. R. Acad. Sci., 256, p. 5042-5044, 1963. [MR: 152860] [Zbl: 0195.13002] [Google Scholar]
  8. J. BEAR, Dynamics of fluids in porous media, American Elsevier, 1972. [Zbl: 1191.76001] [Google Scholar]
  9. J. DOUGLAS, Numerical methods for the flow of miscible fluids in porous media, in Numerical methods in coupled Systems, eds. R. W. Lewis, P. Bettes and E. Hinton, p. 405-439, John Wiley, 1984. [Zbl: 0585.76138] [Google Scholar]
  10. J. DOUGLAS and J. E. ROBERTS, Numerical methods for a model of compressible miscible displacement in porous media, Math, of Computation, 41-164, p. 441-459, 1983. [MR: 717695] [Zbl: 0537.76062] [Google Scholar]
  11. G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, 1976. [MR: 521262] [Zbl: 0331.35002] [Google Scholar]
  12. A. V. KHAZHIKHOV and V. V. SHELUKIN, Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, PMM 41-2, p. 282-291, 1977. [MR: 468593] [Zbl: 0393.76043] [Google Scholar]
  13. O. A. LADYZHENSKAJA, V. A. SOLONNIKOV and N. N. URAL'CEVA, Linear and quasilinear equations of parabolic type, Trans. of Math. Monographs, 28, 1968. [Google Scholar]
  14. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villard, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  15. D.W. PEACEMAN, Fundamentals of numerical reservoir simulation, Elsevier, 1977. [Google Scholar]
  16. A. E. SCHEIDEGGER, The physics of flow through porous media, Univ. Toronto Press, 1974. [Zbl: 0095.22402] [Google Scholar]
  17. D. SERRE, Existence globale de solutions faibles des équations de Navier-Stokes d'un fluide compressible en dimension 1, Sem. Collège de France, X, 1990. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you