Free Access
Issue
ESAIM: M2AN
Volume 34, Number 1, January/February 2000
Page(s) 85 - 107
DOI https://doi.org/10.1051/m2an:2000132
Published online 15 April 2002
  1. D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Baiocchi, F. Brezzi and L.P. Franca, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Eng. 105 (1993) 125-141. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.E. Bank and B.D Welfert, A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990) 61-68. [CrossRef] [Google Scholar]
  4. M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211-224. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71-79. [CrossRef] [Google Scholar]
  6. F. Brezzi, M.-O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96 (1992) 117-129. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  8. F. Brezzi, L.P. Franca and A. Russo, Further considerations on residual-free bubbles for advective-diffusive equations. Technical Report UCD/CCM 113, Univerity of Colorado at Denver, Center for Computational Mathematics (1997). [Google Scholar]
  9. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solutions of Elliptic Systems, W. Hackbusch Ed., Notes on Numerical Fluid Mechanics 10 Vieweg-Verlag Braunschweig (1984) 11-19. [Google Scholar]
  10. M. Fortin, Old and new finite elements for incompressible flows. Int. J. Numer. Methods Fluids 1 (1981) 347-364. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123 (1995) 299-308. [CrossRef] [Google Scholar]
  12. L.P. Franca and S.L. Frey, Stabilized finite element methods. II: The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99 (1992) 209-233. [CrossRef] [MathSciNet] [Google Scholar]
  13. L.P. Franca and A. Russo, Approximation of the Stokes problem by residual-free macro bubbles, East-West J. Numer. Math. 4 (1996) 265-278. [MathSciNet] [Google Scholar]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin (1986). [Google Scholar]
  15. T.J. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59 (1986) 85-99. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Knobloch, Reduced finite element discretizations of the Stokes and Navier-Stokes equations. J. Math. Fluid Mechanics (to appear). [Google Scholar]
  17. P. Mons and G. Rogé, L'élément Q1-bulle/Q1. Math. Mod. Numer. Anal. 26 (1992) 507-521. [Google Scholar]
  18. R. Pierre, Simple C0 approximations for the computation of incompressible flows. Comput. Methods Appl. Mech. Eng. 68 (1988) 205-227. [CrossRef] [Google Scholar]
  19. T.C. Rebollo, A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998) 283-319. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Russo, Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 132 (1996) 335-343. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107-127. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175-182. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you