Free Access
Volume 34, Number 3, May/june 2000
Page(s) 609 - 636
Published online 15 April 2002
  1. R.A. Adams, Sobolev spaces. Academic Press, New York NY, San Francisco CA, London (1975). [Google Scholar]
  2. G. Allain, Un problème de Navier-Stokes avec surface libre. Thèse de troisième cycle de l'Université Paris VI, France (1983). [Google Scholar]
  3. G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim., 16 (1987) 37-50. [Google Scholar]
  4. J.T. Beale, The Initial Value Problem for the Navier-Stokes Equation with a Free Surface. Comm. Pure Appl. Math., XXXIV (1981) 359-392. [Google Scholar]
  5. H. Brezis, Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983). [Google Scholar]
  6. C. Conca, J. San Martin and M. Tucsnak, Motion of a rigid body in viscous fluid. C. R. Acad. Sci. Paris Série I 32 (1999) 473-478. [Google Scholar]
  7. B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal.146 (1999) 59-71. [Google Scholar]
  8. B. Desjardins and M.J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Eq. (to appear). [Google Scholar]
  9. G. Duvaut, Mécanique des milieux continus. Masson, Paris, Milan, Barcelone, Mexico (1990). [Google Scholar]
  10. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg (1986). [Google Scholar]
  11. R. Glowinski and B. Maury, Fluid-particule flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. t. 324, (1997) 1079-1084. [Google Scholar]
  12. C. Grandmont and Y. Maday, Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnaire. C. R. Acad. Sci. Paris Sér. I Math. t. 326, (1998) 525-530. [Google Scholar]
  13. J. Heywood and R. Rannacher, Finite-element approximation of the nonstationnary Navier-Stokes problem. Part III. Smoothing property and higher order error estimates for spatial discretisation. SIAM J. Numer. Anal. 25 (1988) 489-512. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. T. I et II, Dunod, Paris (1968). [Google Scholar]
  15. D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible : Existence. Japan J. Appl. Math. 4 (1987) 33-73. [Google Scholar]
  16. V.A. Solonnikov, Solvability of a Problem on the Motion of a Viscous Incompressible Fluid Bounded by a Free Surface. Math. USSR Izvestiya 4-1 (1977) 1388-1424. [Google Scholar]
  17. V.A. Solonnikov, On the Transiant Motion of an Isolated Volume of Viscous Incompressible Fluid. Math. USSR Izvestiya 31 (1988) 381-405. [CrossRef] [Google Scholar]
  18. V.A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface. J. Soviet Math. 40 (1988) 672-686. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Temam, Navier-Stokes Equations. North-Holland Publishing Company (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you