Free Access
Issue
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
Page(s) 591 - 608
DOI https://doi.org/10.1051/m2an:2000158
Published online 15 April 2002
  1. Y. Achdou, Y. Maday and O.B. Widlund, Méthode itérative de sous-structuration pour les éléments avec joints. C.R. Acad. Sci. Paris Série I 322 (1996) 185-190. [Google Scholar]
  2. Y. Achdou, Y. Maday and O.B. Widlund, Iterative substructuring preconditioners for the mortar finite element method in two dimensions. SIAM J. Num. Anal. 36 (1999) 551-580. [Google Scholar]
  3. Y. Achdou and O. Pironneau, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite element and boundary element methods. SIAM J. Num. Anal. 32 (1995) 985-1016. [Google Scholar]
  4. I. Babuska and M. Suri, The h-p-version of the finite element method with quasi-uniform meshes. Modél. Math. et Anal. Numér. 21 (1987) 199-238. [Google Scholar]
  5. I. Babuska and M. Suri, The p and h-p-versions of the finite element method: basic principles and properties. SIAM Review 36 (1984) 578-632. [Google Scholar]
  6. I. Babuska and M. Suri, The optimal convergence rate of the p-Version of the finite element method. SIAM J. Num. Anal. 24 (1987) 750-776. [Google Scholar]
  7. F. Ben Belgacem, Disrétisations 3D non conformes par la méthode de décomposition de domaine des éléments avec joints : Analyse mathématique et mise en œuvre pour le problème de Poisson. Thèse de l'Université Pierre et Marie Curie, Paris VI. Note technique EDF, ref. HI72/93017 (1993). [Google Scholar]
  8. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Num. Mathematik (to appear). [Google Scholar]
  9. F. Ben Belgacem and Y. Maday, Non conforming spectral element methodology tuned to parallel implementation. Compu. Meth. Appl. Mech. Eng. 116 (1994) 59-67. [CrossRef] [Google Scholar]
  10. C. Bernardi, N. Débit and Y. Maday, Coupling finite element and spectral methods: first results. Math. Compu. 54 (1990), 21-39. [Google Scholar]
  11. C. Bernardi, M. Dauge and Y. Maday, Interpolation of nullspaces for polynomial approximation of divergence-free functions in a cube. Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Lecture Notes in Pure and Applied Mathematics 167 Dekker (1994) 27-46. [Google Scholar]
  12. C. Bernardi and Y. Maday, Spectral, spectral element and mortar element methods. Technical report of the Laboratoire d'analyse numérique, Université Pierre et Marie Curie, Paris VI, 1998. [Google Scholar]
  13. C. Bernardi and Y. Maday, Relèvement de traces polynomiales et applications. RAIRO Modél. Math. Anal. Numér. 24 (1990) 557-611. [MathSciNet] [Google Scholar]
  14. C. Bernardi, Y. Maday and A. T. Patera, A new non conforming approach to domain decomposition: The mortar element method. Pitman, H. Brezis, J.-L. Lions Eds., Collège de France Seminar (1990). [Google Scholar]
  15. C. Bernardi, Y. Maday and G. Sacchi-Landriani, Non conforming matching conditions for coupling spectral and finite element methods. Appl. Numer. Math. 54 (1989) 64-84. [Google Scholar]
  16. A. Berger, R. Scott and G. Strang, Approximate boundary conditions in the finite element method. Symposia Mathematica 10 (1972) 295-313. [Google Scholar]
  17. S. Brenner, A non-standard finite element interpolation estimate. Research Report 1998:07, Department of Mathematics, University of South Carolina (1998). [Google Scholar]
  18. P.-G. Ciarlet, The finite element Method for Elliptic Problems. North Holland (1978). [Google Scholar]
  19. N. Débit, La méthode des éléments avec joints dans le cas du couplage des méthodes spectrales et méthodes des éléments finis : Résolution des équations de Navier-Stokes. Thèse de l'Université Pierre et Marie Curie, Paris VI (1992). [Google Scholar]
  20. M. Dorr, On the discretization of inter-domain coupling in elliptic boundary-value problems via the p-Version of the finite element method. T.F. Chan, R. Glowinski, J. Periaux. O.B. Widlund, Eds., SIAM (1989). [Google Scholar]
  21. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Springer Verlag (1986). [Google Scholar]
  22. P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24 (Pitman, 1985). [Google Scholar]
  23. W. Gui and I. Babuska, The h-p-version of the finite element method in one dimension. Num. Mathematik 3 (1986) 577-657. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Guo and I. Babuska, The h-p-version of the finite element method. Compu. Mech. 1 (1986), Part 1: 21-41, Part 2: 203-220. [Google Scholar]
  25. P. Seshaiyer, Non-Conforming h-p finite element methods. Doctoral Thesis, University of Maryland Baltimore County (1998). [Google Scholar]
  26. P. Seshaiyer and M. Suri,: Uniform h-p Convergence results for the mortar finite element method. Math. Compu. PII: S 0025-5718(99)01083-2 (to appear). [Google Scholar]
  27. P. Seshaiyer and M. Suri, Convergence results for the non-Conforming h-p methods: The mortar finite element method. AMS, Cont. Math. 218 (1998) 467-473. [Google Scholar]
  28. P. Seshaiyer and M. Suri, h-p submeshing via non-conforming finite element methods. Submitted to Compu. Meth. Appl. Mech. Eng. (1998). [Google Scholar]
  29. G. Strang and G. J. Fix, An analysis of the finite element method. Wellesly, Cambridge Press Masson (1973). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you