Free Access
Volume 34, Number 3, May/june 2000
Page(s) 575 - 590
Published online 15 April 2002
  1. R. Alexandre, Sur l'opérateur de Boltzmann linéaire 3D sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I 325 (1997) 959-962. [Google Scholar]
  2. R. Alexandre, Remarks on 3D Boltzmann linear equation without cutoff. Trans. Theory and Stat. Phys. 28 (1999) 433-473. [CrossRef] [Google Scholar]
  3. R. Alexandre, Sur l'opérateur de Boltzmann non linéaire 3D sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I 326 (1998) 165-168. [Google Scholar]
  4. R. Alexandre, Sur le taux de dissipation d'entropie sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I (1998) 311-315. [Google Scholar]
  5. R. Alexandre, Une définition des solutions renormalisées pour l'équation de Boltzmann. Note C.R. Acad. Sci. Paris Sér. I 328 (1999) 987-991. [Google Scholar]
  6. R. Alexandre, The linearised Boltzmann operator and applications. In preparation. [Google Scholar]
  7. R. Alexandre, Solutions Maxwelliennes pour l'équation de Boltzmann sans troncature angulaire. Note submitted to C.R. Acad. Sci. Paris Sér. I (to appear). [Google Scholar]
  8. R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long range interactions. Arch. Rat. Mech. Anal. (to appear). [Google Scholar]
  9. R. Alexandre, C. Villani, On the Boltzmann equation for long-range interactions and the Landau approximation in plasma physics. (Preprints ENS Ulm DMA-99-22, 1999). [Google Scholar]
  10. L. Arkeryd, On the Boltzmann equation. Arch. Rat. Mech. Anal. 45 (1972) 1-34. [Google Scholar]
  11. L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rat. Mech. Anal. 77 (1981) 11-21. [CrossRef] [Google Scholar]
  12. R. Balescu, Statistical Mechanics of charged particles. Wiley Interscience, N.Y, USA (1963). [Google Scholar]
  13. T. Carleman, Problèmes Mathématiques dans la Théorie cinétique des Gaz. Almquist and Wiksell, Uppsala (1957) [Google Scholar]
  14. C. Cercignani, Mathematical Methods in Kinetic Theory. 2nd Ed. Plenum (1990). [Google Scholar]
  15. C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases. Series in Appl. Sci. 106, Springer Verlag, New York (1994). [Google Scholar]
  16. P. Degond and B. Lucquin, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2-2 (1992) 167-182. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Desvillettes, Regularisation properties of the 2D homogeneous Boltzmann equation. Transport Theory Statist. Phys. 26 (1997) 341-357. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Desvillettes, Regularisation for the non-cutoff 2D radially symmetric Boltzmann equation. Transport Theory Statist. Phys. 25 (1996) 383-394. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Stat. Phys. 21 (1992) 259-276. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Desvillettes and B. Wennberg, work in preparation. [Google Scholar]
  21. R.J. DiPerna and P.L. Lions, On the Cauchy problem for Boltzmann equation; Global existence and weak stability. Ann. Maths. 130 (1989) 321-366. [Google Scholar]
  22. R.J. DiPerna and P.L. Lions, Global weak solutions of kinetic equations. Sem. Mat. Torino 46 (1988) 259-288. [Google Scholar]
  23. T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics. J. Stat. Phys. 89 (1997) 751-776 . [Google Scholar]
  24. P.L. Lions, Compactness in Boltzmann's equation, via FIO and applic. J. Math. Kyoto Univ. 34 (1994) Part I 391-427; Part II 429-461, Part III 539-584. [Google Scholar]
  25. P.L. Lions, On Boltzmann and Landau equations. Phil. Trans. Roy. Soc. London A-346 (1994) 191-204. [Google Scholar]
  26. P.L. Lions, Regularity and compactness for Boltzmann collision operators without angular cutoff. Note C.R. Acad. Sci. Paris Sér. I 326 (1998) 37-41. [Google Scholar]
  27. Y.P. Pao, Boltzmann Collision Operator with Inverse power Intermolecular potentials. C.P.A.M 27 ( 1974) Part I 407-428; Part II 559-581. [Google Scholar]
  28. M.E. Taylor, Pseudo-Differential Operators. Princeton Univ. Press (1981). [Google Scholar]
  29. M.E. Taylor, Pdo and non linear PDE, Birkhauser, Boston (1991). [Google Scholar]
  30. C. Villani, Contributions à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasma, Thèse Université Paris-Dauphine (1998). [Google Scholar]
  31. C. Villani, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev. Mat. Iberoam. (to appear). [Google Scholar]
  32. C. Villani, Conservative forms of Boltzmann's collision operator: Landau revisited. Math. Mod. Num. An. (1998). [Google Scholar]
  33. S. Ukai, Solutions of the Boltzmann equation. In: Patterns and Waves, North-Holland (1985). [Google Scholar]
  34. B. Wennberg, Regularity in the Boltzmann equation and the Radon transform. CPDE 19, (1994) 2057-2074. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you