Free Access
Issue |
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
|
|
---|---|---|
Page(s) | 539 - 554 | |
DOI | https://doi.org/10.1051/m2an:2000155 | |
Published online | 15 April 2002 |
- S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of partial differential equations satisfying general boundary conditions I, II. Comm. Pure Appl. Math. 12 (1959) 623-727 ; 17 (1964) 35-92. [Google Scholar]
- A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain. J. Dyn. Differential Equations 7 (1995) 567-590. [CrossRef] [Google Scholar]
- A.V. Babin and M.I. Vishik, Attractors of evolution equations. North-Holland, Amsterdam (1991). [Google Scholar]
- H. Brezis, Analyse fonctionnelle, théorie et applications. Masson (1983). [Google Scholar]
- J.W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795-801. [CrossRef] [Google Scholar]
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2 (1958) 258-267. [CrossRef] [Google Scholar]
- M. Carrive, A. Miranville, A. Piétrus and J.M. Rakotoson, The Cahn-Hilliard equation for an isotropic deformable continuum. Appl. Math. Letters 12 (1999) 23-28. [CrossRef] [Google Scholar]
- M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. (to appear). [Google Scholar]
- V.V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. [MathSciNet] [Google Scholar]
- L. Cherfils and A. Miranville, Generalized Cahn-Hilliard equations with a logarithmic free energy (submitted). [Google Scholar]
- J.W. Cholewe and T. Dlotko, Global attractors of the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49 (1994) 277-302. [CrossRef] [MathSciNet] [Google Scholar]
- A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24 (1995) 1491-1514. [CrossRef] [Google Scholar]
- A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations. Masson (1994). [Google Scholar]
-
M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in
with a strong nonlinearity. Disc. Cont. Dyn. Systems 5 (1999) 399-424. [CrossRef] [Google Scholar]
- C.M. Elliot and S. Luckhauss, A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint. [Google Scholar]
- P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations. Disc. Cont. Dyn. Systems 4 (1998) 225-240. [CrossRef] [Google Scholar]
- C. Galusinski, Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels. Thèse, Université Bordeaux-I (1996). [Google Scholar]
- C. Galusinski, M. Hnid and A. Miranville, Exponential attractors for nonautonomous partially dissipative equations. Differential Integral Equations 12 (1999) 1-22. [MathSciNet] [Google Scholar]
- M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92 (1996) 178-192. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
- D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differential Equations (1998). [Google Scholar]
- M. Marion and R. Temam, Navier-Stokes equations, theory and approximation, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions eds. (to appear). [Google Scholar]
- A. Miranville, Exponential attractors for nonautonomous evolution equations. Appl. Math. Letters 11 (1998) 19-22. [CrossRef] [Google Scholar]
- A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci. 328 (1999) 145-150. [Google Scholar]
- A. Miranville, Long time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Series B (to appear). [Google Scholar]
- A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case. C. R. Acad. Sci. 328 (1999) 907-912. [Google Scholar]
- A. Miranville, Equations de Cahn-Hilliard généralisées dans un milieu déformable. C. R. Acad. Sci. 328 (1999) 1095-1100. [Google Scholar]
- A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance. C. R. Acad. Sci. 328 (1999) 1247-1252. [Google Scholar]
- A. Miranville, A. Piétrus and J.M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance. Asymptotic Anal. 16 (1998) 315-345. [Google Scholar]
- B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14 (1989) 245-297. [CrossRef] [MathSciNet] [Google Scholar]
- R. Temam, Infinite dimensional dynamical systems in mechanics and physics. 2nd. ed., Springer-Verlag, New-York (1997). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.