Free Access
Issue
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
Page(s) 687 - 706
DOI https://doi.org/10.1051/m2an:2000162
Published online 15 April 2002
  1. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (1994).
  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York (1991).
  3. S.J. Chapman, A mean-field model of superconducting vortices in three dimensions. SIAM J. Appl. Math. 55 (1995) 1259-1274. [CrossRef] [MathSciNet]
  4. S.J. Chapman and G. Richardson, Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296. [CrossRef] [MathSciNet]
  5. S.J. Chapman, J. Rubenstein, and M. Schatzman, A mean-field model of superconducting vortices. Euro. J. Appl. Math. 7 (1996) 97-111.
  6. Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. (Preprint, 1998).
  7. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuos galerkin finite element method for conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545-581.
  8. Q. Du, Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer. Analysis, (1998).
  9. Q. Du, M. Gunzburger, and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34 (1992) 54-81. [CrossRef] [MathSciNet]
  10. Q. Du, M. Gunzburger, and J. Peterson, Computational simulations of type-II superconductivity including pinning mechanisms. Phys. Rev. B 51 (1995) 16194-16203. [CrossRef]
  11. Q. Du, M. Gunzburger and H. Lee, Analysis and computation of a mean field model for superconductivity. Numer. Math. 81 539-560 (1999).
  12. Q. Du and Gray, High-kappa limit of the time dependent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math. 56 (1996) 1060-1093. [CrossRef] [MathSciNet]
  13. W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383-404. [CrossRef] [MathSciNet]
  14. C. Elliott and V. Styles, Numerical analysis of a mean field model of superconductivity. preprint.
  15. V. Girault and -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986).
  16. Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985).
  17. C. Huang and T. Svobodny, Evolution of Mixed-state Regions in type-II superconductors. SIAM J. Math. Anal. 29 (1998) 1002-1021. [CrossRef] [MathSciNet]
  18. Lesaint and P.A. Raviart, On a Finite Element Method for Solving the Neutron Transport equation, in: Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974).
  19. L. Prigozhin, On the Bean critical-state model of superconductivity. Euro. J. Appl. Math. 7 (1996) 237-247.
  20. L. Prigozhin, The Bean model in superconductivity: variational formulation and numerical solution. J. Com Phys. 129 (1996) 190-200. [CrossRef] [MathSciNet]
  21. Raviart and J. Thomas, A mixed element method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite Element Method, Lecture Notes on Mathematics, Springer, Berlin 606 (1977).
  22. R. Schatale and V. Styles, Analysis of a mean field model of superconducting vortices (preprint).
  23. R. Temam, Navier-Stokes equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you