Free Access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 859 - 872
DOI https://doi.org/10.1051/m2an:2000100
Published online 15 April 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. C. Bernardi and Y. Maday, Spectral methods, in Techniques of Scientific Computing, Part 2, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1997) 209-486. [Google Scholar]
  3. O. Coulaud, D. Funaro and O. Kavian, Laguerre spectral approximation of elliptic problems in exterior domains. Comp. Mech. Appl. Mech. Eng. 80 (1990) 451-458. [CrossRef] [Google Scholar]
  4. R. Courant, K.O. Friedrichs and H. Levy, Über die partiellen differezengleichungen der mathematischen physik. Math. Annal. 100 (1928) 32-74. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Funaro, Estimates of Laguerre spectral projectors in Sobolev spaces, in Orthogonal Polynomials and Their Applications, C. Brezinski, L. Gori and A. Ronveaux Eds., Scientific Publishing Co. (1991) 263-266. [Google Scholar]
  6. D. Funaro and O. Kavian, Approximation of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comp. 57 (1990) 597-619. [CrossRef] [Google Scholar]
  7. B.Y. Guo, A class of difference schemes of two-dimensional viscous fluid flow. TR. SUST (1965). Also see Acta Math. Sinica 17 (1974) 242-258. [Google Scholar]
  8. B.Y. Guo, Generalized stability of discretization and its applications to numerical solution of nonlinear differential equations. Contemp. Math. 163 (1994) 33-54. [Google Scholar]
  9. B.Y. Guo, Spectral Methods and Their Applications. World Scientific, Singapore (1998). [Google Scholar]
  10. B.Y. Guo, Error estimation for Hermite spectral method for nonlinear partial differential equations. Math. Comp. 68 (1999) 1067-1078. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.L. Levin and D.S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevais conjecture for Freud weights. Constr. Approx. 8 (1992) 461-533. [Google Scholar]
  12. D.S. Lubinsky and F. Moricz, The weighted Lp-norm of orthogonal polynomial of Freud weights. J. Approx. Theory 77 (1994) 42-50. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Maday, B. Pernaud-Thomas and H. Vandeven, Une réhabilitation des méthodes spectrales de type Laguerre. Rech. Aérospat. 6 (1985) 353-379. [Google Scholar]
  14. R.D. Richitmeyer and K.W. Morton, Finite Difference Methods for Initial Value Problems, 2nd ed., Interscience, New York (1967). [Google Scholar]
  15. H.J. Stetter, Stability of nonlinear discretization algorithms, in Numerical Solutions of Partial Differential Equations, J. Bramble Ed., Academic Press, New York (1966) 111-123. [Google Scholar]
  16. G. Szegö, Orthogonal Polynomials. Amer. Math. Soc., New York (1967). [Google Scholar]
  17. A.F. Timan, Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you