Free Access
Issue
ESAIM: M2AN
Volume 35, Number 2, March/April 2001
Page(s) 191 - 228
DOI https://doi.org/10.1051/m2an:2001112
Published online 15 April 2002
  1. R. Adams, Sobolev spaces. Academic Press, London (1976). [Google Scholar]
  2. R. Albanese and G. Rubinacci, Formulation of the eddy-current problem. IEEE proceedings 137 (1990). [Google Scholar]
  3. G. Anagnostou, A. Patera and Y. Maday, A sliding mesh for partial differential equations in nonstationary geometries: application to the incompressible Navier-Stockes equations. Tech. rep., Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (1994). [Google Scholar]
  4. F. Ben Belgacem and Y. Maday, Non-conforming spectral element methodology tuned to parallel implementation. Comput. Meth. Appl. Mech. Engrg. 116 (1994) 59-67. [CrossRef] [Google Scholar]
  5. F. Ben Belgacem, Y. Maday, The mortar element method for three dimensional finite elements. RAIRO-Modél. Math. Anal. Numér. 2 (1997) 289-302. [Google Scholar]
  6. C. Bernardi, Optimal finite element interpolation of curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: The mortar elements method, in Nonlinear partial differential equations and their applications, H. Brezis and J. Lions, Eds., Collège de France Seminar, Paris, Vol. XI (1994) 13-51. [Google Scholar]
  8. A. Bossavit, Électromagnétisme en vue de la modélisation, Springer-Verlag, Paris (1986). [Google Scholar]
  9. A. Bossavit, Calcul des courants induits et des forces électromagnétiques dans un système de conducteurs mobiles. RAIRO-Modél. Math. Anal. Numér. 23 (1989) 235-259. [MathSciNet] [Google Scholar]
  10. A. Bossavit, Le calcul des courants de Foucault en dimension 3, avec le champ électrique comme inconnue. I: Principes. Rev. Phys. Appl. 25 (1990) 189-197. [Google Scholar]
  11. F. Bouillault, Z. Ren and A. Razek, Modélisation tridimensionnelle des courants de Foucault à l'aide de méthodes mixtes avec différentes formulations. Rev. Phys. Appl. 25 (1990) 583-592. [Google Scholar]
  12. C.J. Carpenter, Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies. IEEE proceedings 124 (1977) 1026-1034. [Google Scholar]
  13. P. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  14. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, 2nd edn. Masson, Paris (1987). [Google Scholar]
  15. B. Davat, Z. Ren and M. Lajoie-Mazenc, The movement in field modeling. IEEE, Trans. Magn. 21 (1985) 2296-2298. [Google Scholar]
  16. C.R.I. Emson, C.P. Riley, D.A. Walsh, K. Ueda and T. Kumano, Modeling eddy currents induced by rotating systems. IEEE, Trans. Magn. 34 (1998) 2593-2596. [Google Scholar]
  17. Y. Goldman, P. Joly and M. Kern, The electric field in the conductive half-space as a model in mining and petroleum prospection. Math. Meth. Appl. Sci. 11 (1989) 373-401. [CrossRef] [Google Scholar]
  18. J. Jackson, Classical electrodynamics. Wiley, New York (1952). [Google Scholar]
  19. S. Kurz, J. Fetzer, G. Lehenr, and W. Rucker, A novel formulation for 3d eddy current problems with moving bodies using a Lagrangian description and bem-fem coupling. IEEE, Trans. Magn. 34 (1998) 3068-3073. [Google Scholar]
  20. R. Leis, Initial Boundary value problems in mathematical physics. John Wiley and Sons (1986). [Google Scholar]
  21. Y. Marechal, G. Meunier, J. Coulomb and H. Magnin, A general purpose for restoring inter-element continuity. IEEE, Trans. Magn. 28 (1992) 1728-1731. [Google Scholar]
  22. A. Nicolet, F. Delincé, A. Genon and W. Legros, Finite elements-boundary elements coupling for the movement modeling in two dimensional structures. J. Phys. III 2 (1992) 2035-2044. [Google Scholar]
  23. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Ser. Comput. Math. 23, Springer-Verlag (1993). [Google Scholar]
  24. F. Rapetti, L. Santandrea, F. Bouillault and A. Razek, Simulating eddy currents distributions by a finite element method on moving non-matching grids. COMPEL 19 (2000) 10-29. [Google Scholar]
  25. A. Razek, J. Coulomb, M. Felliachi and J. Sobonnadière, Conception of an air-gap element for dynamic analysis of the electromagnetic fields in electric machines. IEEE, Trans. Magn. 18 (1982) 655-659. [Google Scholar]
  26. D. Rodger, H. Lai and P. Leonard, Coupled elements for problems involving movement. IEEE, Trans. Magn. 26 (1990) 548-550. [Google Scholar]
  27. V. Thomeé, Galerkin finite element methods for parabolic problems. Ser. Comput. Math. 25, Springer (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you